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Summary

The goals of this research program were to

(i) determine how microstructural factors, especially the architecture of reinforcing fibers,

control stiffness, strength, and fatigue life in 3D woven composites;

(ii) identify mechanisms of failure;

(iii) model composite stiffness;

(iv) model notched and unnotched strength; and

(v) model fatigue life.

We have examined a total of eleven different angle and orthogonal interlock woven

composites. Extensive testing has revealed that these 3D woven composites possess an

extraordinary combination of strength, damage tolerance, and notch insensitivity in compression

and tension and in monotonic and cyclic loading. In many important regards, 3D woven

composites far outstrip conventional 2D laminates or stitched laminates. Detailed microscopic

analysis of damage has led to a comprehensive picture of the essential mechanisms of failure and

how they are related to the reinforcement geometry. The critical characteristics of the weave

architecture that promote favorable properties have been identified. Key parameters are tow size

and the distributions in space and strength of geometrical flaws. The geometrical flaws should be

regarded as controllable characteristics of the weave in design and manufacture.

In addressing our goals, the simplest possible models of properties were always sought, in

a blend of old and new modeling concepts. Nevertheless, certain properties, especially regarding

damage tolerance, ultimate failure, and the detailed effects of weave architecture, require

computationally intensive stochastic modeling. We have developed a new model, the "Binary

Model", to carry out such tasks in the most efficient manner and with faithful representation of

crucial mechanisms.

This is the final report for contract NAS 1-18840. It covers all work from April 1989 up to

the conclusion of the program in January 1993.



1. Introduction

Recent advances in resin transfer molding have made possible the manufacture of high

volume fraction composites from a great variety of dry fiber preforms. The most interesting of

these have three-dimensional (3D) reinforcement, in which the fibers alone carry loads in each of

three linearly independent directions. Dry 3D preforms can be manufactured by weaving, braiding,

stitching, or knitting [e.g., 1-5].

3D polymer composites have been pursued in the aerospace industry largely in reaction to

the vulnerability of conventional laminates to delamination under impact and subsequent failure by

buckling under in-plane compression. In this regard, they have been successful [3,4,6,7]. It is

now becoming clear that they have outstripped this goal by also exhibiting extraordinary properties

under in-plane loading in their pristine condition. Following their 3D carbon-carbon composite

ancestors [e.g., 8], certain 3D polymer composites offer large strains to failure I , suggesting notch

insensitivity and damage tolerance far beyond those of 2D laminates.

In early work under this contract [9], high strains to failure of 3D woven interlock

composites under uniaxial compression were linked to broad distributions of geometrical flaws in

strength and space. The geometrical flaws comprise both misalignment of nominally straight load

bearing tows and certain topological features of the weave architecture. Geometrical flaws lower

the critical value of the local stress for kink band formation, which was determined to be the

primary mechanism for failure.

In tension and bending, damage tolerance is again far in excess of that typical of

conventional 2D laminates. Consideration of the mechanics of the observed failure events leads to

general remarks about the origins of such behavior. Once again, geometrical flaws appear to have a

vital role.

The mechanisms of damage observed in fatigue are closely related to those seen under

monotonic loading. Ultimate failure again tends to be associated with broadly distributed damage

and high energy absorption.

1 Throughout this report, strain to failure will refer to the strain at which any specimen ceased to bear load when

tested under stroke control. The strain failure so defined is always equal to or greater than the strain to peak load; it is
often much greater.
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All our experimental observations form the basis for models for design and reliability in

monotonic and cyclic loading. The fast generation of these models is also reported here.

2. Materials

The subject materials were various 3D interlock weaves impregnated and consolidated with

epoxy resin. Eleven different composites were studied in all. The weaver's specifications for the

reinforcement in each case are listed in Table 1. As also indicated in Table 1, the eleven materials

can be conveniently divided into two groups according to the degree of fiber compaction achieved

during processing.
Table 1

Weaver's Specifications for Reinforcement

Warp Tow DenieP Number of

Preform Weaver Layers of Ends per Picks per
Label Architecture M:lteri;d Stuffer.,; Fillers Weavers Stuffers cm (inch) h cm (inch) c

(a) Lightly Compacted (Resin: Dow Tactix 138 with 1141 hardener) )

I-L- I Layer-to-Layer AS4 13.gk 13.8k 5.9k 4 5. I (13) 4.4 ( I 1.3)
l-L-2 Angle Interlock S-2 glass 13.8k 13.8k 5.95k 4 5.1 (13) 5.9 (15)

I-T-I Through-the-Thickness AS4 13.8k 13.8k 5.9k 4 4.7 (12) 5.0 (12.7)
l-T-2 Angle Interlock S-2 glass 13.gk 13.gk 5.95k 4 5.1 (13) 5.0 (12.7)

I-O Orthogon,'d Interlock AS4 13.gk 13.8k 5.9k 4 4.7 (12) 5.1 (13)

(b) Heavily Compacted (Resin: Shell RSL- 1895 with El)ON CIIRING A(;F.N'I '_g'W" )

h-L- 1 Layer-to-Layer AS4 15.gk 7.9k (3.9,1k,0.6(_) d 4 .5.5 (14) 5. I (13)
h-L-2 Angle Interlock AS4 7.9k 3.94k (I.97k.0.66k) d 6 7.1 (18) 7.9 (20)

h-T-I Through-the-Thickness AS4 15.gk 7.9k 3.94k 4 5.5 (14) 5.1 (13)
h-T-2 Angle Interlock AS4 7.9k 3.94k 1.97k 6 7.1 (18) 7.9 (20)

h-O-I Orthogonal Interlock AS4 15.8k 7.9k 3.94k 4 5.5 (14) 5.1 (13)
h-O-2 Orthogonal Interlock AS4 7.9k 3.94k 1.97k 6 7.1 (18) 7.9 (20)

a For AS4 fibers, a tow denier of 13.8k corresponds to a filament count (fibers per tow) of 21,000, 15.gk to a count of 24,000, 7.9k to 12,000,

..... 0.66k to 1000.

b number of columns of stuffers per cm (inch) in weft direction.

c number of columns of fillers per cm (inch) in warp direction.

d The first figure refers to warp weavers, the second to surface warp weavers.

I' Dow Chemical Co., Freedxm.Texas
* Shell Oil Co., Anal_im. Califtwnia

All fiber preforms were supplied by Textile Technologies, lnc.t The "lightly compacted

composites" were processed by the authors and their colleagues by methods described fully in

Appendix A, using Dow Tactix 138 resin with H41 hardener. The dry preforms in this group

were relatively loosely woven and minimal compaction pressure was applied to them in the

through-thickness direction during consolidation. The resulting composites possess relatively low

1" Textile Technologies, Inc., Hatboro, Pennsylvania.



total fiber volume fractions. The "heavily compacted composites" were processed by Boeing*

using Shell 1895 resin with a cure cycle of 30 rain. at 149oC and 90 min. at 177°C, followed by a

further 2 hr. post cure at 177°C [10]. The dry preforms in this group were relatively tightly woven.

Substantial through-thickness pressure (1.5 MPa) during consolidation produced some further

compaction and ensured the attainment of predetermined thicknesses for each composite. The

resulting volume fractions were relatively high. Because of the higher volume fractions and the

lower weight per unit area of the dry fiber preforms, the heavily compacted composites were only

half as thick as the lightly compacted ones (Table 2).

Table 2

Fiber Volume Fractions

Specimen Total Fiber Fraction by Volume of All Fibers Lying in:f
Composite Thickness Nominal Volume Fractions Volume Fraction e Stuffers Fillers Warp Weavers

(era) a
V,_ V6 V,,a

v fs ff f,,

1-L-1 1.26 0.14 0.15 0.07 0.35:1:0.03 0.385 0.418 0.197
l-L-2 1,24 0.14 0.20 0.05 0,370± O.O05g 0.066± 0.004h 0.347 0.502 O.151

/-1"-I 1.02 0.16 0.21 0.05 0.466 + 0.003 0.381 0.504 0.115
l-T-2 0.97 0.18 0.22 0.04 0.408 + 0.02(_ 0.044 ± 0.0041_ 0.406 0.497 0.097

l- O 0.88 0.18 0.25 0.04 0.483 + 0.010 0.387 0.524 0.090

h-L-I 0.561 0.38 0.22 0.05 0.620 ± 0.008 0.587 0.340 0.073
h-L-2 0.625 0.33 0.21 0.025 0.557 ± 0.015 0.580 0.375 0.045
h-T-1 0.573 0.37 0.22 0.065 0.613 ± 0.003 0.571 0.331 0.098
h-T-2 0.577 0.36 0.23 0.035 0.592 ± 0.014 0.571 0.369 0.059
h-O-I 0.579 0.37 0.22 0.045 0.619 ± 0.008 0.586 0.340 0.073
h-O-2 0,587 0.35 0.23 0.065 0.593 ± 0,014 0.545 0.353 0.102

a in direction normal to warp and weft directions.

b Vs m volume fraction of stuffer (straight warp) tows.

c Vf = volume fraction of filler (weft) tows.

d Vw a volume fraction of warp weaver (3D warp) tows.

• measured by acid digestion.

f dete:mined from weaver's specifications.

it graphite fibers.
h glass fibe.xs.

The angle and orthogonal interlock architectures are shown schematically in Fig. 1. The

stuffers (straight warp) and fillers (straight weft) form a 00/90 ° array resembling a coarse laminate,

but with individual tows remaining distinct within each lamina. Figure 1 shows projections on

planes normal to the filler direction of architectures representative of those in Table 1. Progressing

down the filler direction, planes containing a full complement of stuffers generally alternate with

planes containing two warp weavers in the case of angle interlock weaves and one warp weaver in

the case of orthogonal interlock weaves. The phases of the warp weavers encountered in

successive planes are varied to minimize short range order. In the thicker orthogonal interlock

* Boeing Aircraft Co., Seattle, Washington.
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composites,planescontaininga warpweaverarealternatedwith twolayersof stuffersto limit the

volumefractionof thewarpweaverstothedesiredrange.

surface warp

(a)

body warp weaver SC-3049-T

(b)

Fig. 1

(c)

0

0

0

0 0

°l°,°
01oyo
°I°H°
0 0

0

0

0

C) filler (weft) m.,m stuffer (straight warp)

warp weaver

Schematics of (a) layer-to-layer angle interlock (b) through-the-thickness angle interlock,
and (c) orthogonal interlock weaves. Numbers indicate typical sequences in which warp
weavers are encountered on progressing down the filler direction.
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Table2 summarizesfiber volumefractiondatafor all thecomposites.The nominal volume

fractions for each kind of tow are deduced from the weaver's specifications of Table 1 and the

measured composite thickness of Table 2. Following the ideal geometry of Fig. 1, the stuffers and

fillers are assumed straight in these estimates, while the warp weavers are assigned a "take up

factor", which is the ratio of the measured length of representative warp weavers drawn from a

woven preform to the length of preform from which they have been drawn. The take up factor is

typically ~ 1.2 for layer-to-layer angle intedock weaves, ~ 1.3 for through-the-thickness angle

interlock weaves, and between 3 and 5 for orthogonal interlock weaves. Since the warp weavers

contribute relatively lightly to the overall fiber content, the precise value of the take up factor has a

small influence on in-plane property estimates. In practice, some departure from these nominal

volume fractions is to be expected, because variations may occur in the tightness of the fabric and

sizing on fibers influences the specified tow denier. Therefore, the total volume fraction, V,

constituted by all fibers was measured for each composite by weighing the fibers in a known

volume after acid digestion of the resin (following the procedure in ASTM Standard D3171). The

value of V differs from the sum of the nominal volume fractions by as much as 10%. Regarding V

as the more accurate and reliable figure, the volume fractions of fibers in the different kinds of

tows can be deduced from it with reasonable confidence by assuming that the proportions of all

fibers in each kind of tow remain as deduced from the weaver's specifications; i.e., in the ratios

Vs:Vf.Vw. The variables fs, ff, and fw in Table 2 denote the fractions by volume of all fibers lying

in stuffers, fillers, and weavers, respectively, so determined.

Both the lightly and heavily compacted composites deviate substantially from the nominal

or ideal pattern of straight stuffers and fillers and approximately sawtooth, square wave, or

sinusoidal warp weavers. One of the main aberrations in both groups is the distortion of the fillers

and stuffers near sites where warp weavers wrap around fillers, as in the schematic of Fig. 2. In

occurrences of this configuration at the specimen surface, the warp weaver is sometimes separated

from the surface by a pocket of resin, implying that the distortion must have arisen during weaving

as a result of tension in the warp weaver. In other occurrences, the warp weaver is pressed against

the surface, implying that the distortion may be the result of through-thickness compaction during

consolidation. In the lightly compacted composites, instances of the distortion of Fig. 2 tend to

appear randomly throughout the structure, while in the heavily compacted composites, they tend to

occur systematically, often at every warp weaver extremum. The magnitude of the distortion varies

significantly from one weave type to another.

6



SC-07t2-C

N

uffers

warp weaver_-_ _

Fig. 2 Schematic of the deformation of a stuffer and filler near an extremum of a warp weaver.

In the lightly compacted composites, other random distortions of stuffers and fillers are

also found. In the heavily compacted materials, the stuffers are relatively straight away from warp

weaver extrema. To some extent, this difference is attributable to the difference in compaction

pressure and to some extent to the fact that the fiber preforms used for the lightly compacted

specimens were significantly more irregular as received from the weaver than those used in the

heavily compacted composites. On the other hand, the fillers in heavily compacted materials are

generally very heavily distorted (Fig. 3). This is perhaps attributable to the fillers being much

lighter than the stuffers in the heavily compacted materials and to the fact that fillers are more

directly affected by the distortion of Fig. 2.

Another significant distortion is crimping of warp weavers, as illustrated in the micrograph

of Fig. 4. This distortion is generally much more severe in the heavily compacted composites. It is

obviously the result of through-thickness compaction during consolidation.

Aberrations from ideal geometry are very important in determining composite properties,

especially strength, strain to failure, and fatigue life.



(a)
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(b) _:_ fillers

I I

0.5 cm

Fig. 3 Typical distortions of (a) stuffers and (b) fillers in the heavily compacted composite
h-L-1.

(a) heavily compacted SCP4]OO4-T

warp weaver
I I

3 mm

(b) lightly compacted

warp weaver

I l
5 mm

Fig. 4 Distortion of warp weavers in angle interlock woven composites that are (a) heavily
compacted and (b) lightly compacted.



3. Monotonic Loading

3.1 Experiments and Observations

Because our ultimate goal has been to formulate mechanism-based design and reliability

models, the experiments reported here were not planned to provide comprehensive engineering

data for all the composites studied. Emphasis lay instead on associating typical macroscopic

properties with failure mechanisms and identifying microstructural aspects of the composites upon

which the failure mechanisms depend. Tabulated data usually refer to a single test for each

composite type in Table 1, the exceptions being those results for which experimental scatter is

indicated.

This section reports tests conducted under monotonic loading. Fatigue tests are reported in

Section 4. Tests comprised uniaxial tension and compression using dogbone specimens,

compression of short cuboidal specimens between flat platens, and four-point and three-point

bending of long rectangular bars. The thickness of all specimens was that of the original composite

panel, with all machining cuts made normal to the original surfaces. Satisfactorily smooth and

damage-free cut surfaces were obtained using a water jet.

Dogbone specimens for the lightly compacted composites had straight sided gauge sections

approximately 2.4 cm long and 1.1 cm wide (Fig. 5a). For the heavily compacted composites,

some experimentation with specimen shape was required to induce failures in the gauge section.

The final specimen shape, which was almost universally successful in this regard, was that of

Fig. 5b. Short cuboidal specimens were approximately 2.1 cm long and 1 cm wide. Bending bars

were approximately 12.5 cm long and 1 cm wide, with moment arms of 5.7 cm and 2.9 cm for

three-point and four-point bending respectively.

In all compression and tension tests, the long axis of the specimen and therefore the load

axis were aligned with the stuffers.t In bending tests, bending was applied about an axis parallel to

the fillers.

t Tests with loading along the filler direction will be reported under our new contract NAS1-19243. All aspects of
modeling for this load orientation are qualitatively identical to the modeling reported here.
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(a)

t
1 cm

(b)

Fig. 5 Dogbone specimen dimensions for tests of (a)

composites.

SC-211_7-CA!

-2 ¢m_

5cm

Icm ----b

lightly and (b) heavily compacted

3.1.1 Compression Tests

All tests were conducted under displacement control. For compression tests, the controlled

displacement was the stroke of the test apparatus. Stress-strain curves are presented in Fig. 6.

Test data for the first four lightly compacted composites of Table 1 are summarized in

Tables 3 and 4. These particular materials have high strains to failure under compression, in

contrast to conventional 2D laminates or stitched laminates, which fail in a brittle manner. The

ductility is due to the action of geometrical flaws, which consist of either the misalignment of

nominally straight tows or certain topological features of the reinforcement architecture. Details of

this crucial idea appear in [ 1] and below.

Test data for compression tests of heavily compacted composites are summarized in

Table 5. For both dogbone and cuboidal specimens, substantial nonlinearity sets in at less than

half the peak load or at strains - 0.5%. The figure quoted in Table 5 for the modulus is that for the

approximately linear regime at low stresses. In the dogbone tests, softening sometimes reflected

Euler buckling of the entire specimen. While buckling was rarely observed in tests of lightly

compacted composites, it is much harder to suppress in the heavily compacted composites because

they are only half as thick. For the cuboidal specimens, initial nonlinearity can be caused by the

constraint of the specimen ends and Poisson's effect, which combine to cause the lateral surfaces

10
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Fig. 6 Stress-strain curves for monotonic uniaxial compression in the stuffer direction.
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Data

Woven

composites

Table 3

for Cuboidal Test Specimen--Lightly Compacted Composites

]_aXilTIUlTI

compressive

Specimen Vs a stress Modulus Emb
label (MPa) (GPa)

'l-L- 1 0.28 230 35 0.0095
I-L-2(I) 0.23 215 23 0.012

l-L-2(II) 0.20 205 20 0.012

l-T- 1(I) 0.33 240 38 0.012

l-T- 1(II) 0.27 205 28 0.012
l-T- l(III) 0.25 200 31 0.011
I-L-2 0.27 240 27 0.010

Tactix 138 j e-1 105 2.9 0.079
epoxy _ e-2 115 3.06 0.080

El/2 c

0.06
0.09
0.12
0.16
0.15
0.16
0.1

d

aVolume fraction of aligned fibers, including straight surface warp weavers.
bCompressive strain at maximum load.

cCompressive strain when post-peak load has fallen to half the maximum.

dBoth tests of epoxy finished with load still exceeding half maximum.

Table 4

Data for Dog-bone Test SpecimensmLightly Compacted Composites

Maximum

Specimen Controlled compression Modulus
label parameter stress (MPa) (GPa) Ema E 1/2b

Method of
strain

measurement c

l-L- 1(I) strain 210 41.5 0.005
l-L- 1(II) load 210 2 8
l-L-2(I) load 140 2 5 0.006
l-L-2(II) strain 155 3 5 0.005
l-L-2(III) strain 160
l-T- 1(I) strain 165 32.5 0.005
I-T-I(II) load 150
I-T-2(I) strain 205 35.5 0.006
I-T-2(II) strain 195 38.5 0.005

0.05

0.14

0.03
0.04

cg
Sl

cg
cg

cg
cg
cg
Sl

aCompressive strain at maximum load.

bCompressive strain when post-peak load has fallen to half of maximum.

C"cg" indicates a clip gauge, "si" steroimaging; in both cases, using a 1.2 cm gauge length.
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Table 5

Preform Label

Compression Tests of Heavily Compacted Specimens

Maximum

Compressive Modulus
Stress (GPa)
(MPa)

Em

Dogbone Specimens

h-L- 1 670 88
h-L-2 695 81
h-T- 1 570 83
h-T-2 540 72
h-O-1 635 72

h_O_2 b 555 + 15 70 + 5

0.008
0.009

0.0078
0.0102
0.0107
0.008

1_/2

Cuboidal Specimens

h-L-1 470 61 0.0108 0.0143

h_L_2 c ........
h-T-1 515 52 0.0112 0.0146
h-T-2 440 42 0.0125 0.025
h-O- 1 505 52 0.0142 0.0285

h_O_2 c ........

a Strain at which the load falls to half the peak load.

b Two tests, both of which were terminated by Euler buckling.

c Not tested.

to barrel outwards, reducing stiffness because of the concomitant curvature of stuffers.

Nonlinearity at strains much above 0.5% is also caused by microcracking.

The strengths of the heavily compacted specimens in compression are two to three times

those reported for lightly compacted specimens (Tables 3-5). Part of the increase is attributable to

the higher fiber volume fractions achieved in heavy compaction; but other factors are also

significant, as discussed below.

On the other hand, the strains to failure of the heavily compacted specimens are

substantially lower than those of the lightly compacted materials. The dogbone tests of heavily

compacted materials reveal essentially brittle behavior, with negligible loads recorded at strains

above that of the peak load. However, the apparent brittleness may have been exaggerated by

13



failureof the test apparatus to maintain stable stroke control after specimen buckling. The cuboidal

specimens carded significant loads at strains up to ~ 3%, which fax exceed the failure strains of

conventional or stitched 2D laminates, but remain much lower than those recorded for the lightly

compacted composites.

In contrast to lightly compacted materials, the heavily compacted materials are prone to

delamination failure. While partial delaminations were previously observed in dogbone tests of the

lightly compacted materials, the associated opening displacements were smaller and they were not

the mechanism of ultimate failure. Ultimate failure of the lightly compacted materials was always

the result of kink band formation in individual stuffers and usually occurred at much higher strains

than delaminations. Figure 7a shows typical damage at high strain (~ 15%) following widespread

kinking in a cuboidal specimen of the lightly compacted composite l-T- 1. In dog-bone tests of the

heavily compacted composites, ultimate failure often occurred so quickly after delamination that it

was difficult to separate the two events. In such cases, the delamination itself remained one of the

primary manifestations of damage. Figure 7b shows a failed cuboidal specimen of the heavily

compacted composite h-L- 1, where damage consists essentially of brooming of stuffers at one end

of the specimen, with concomitant lateral displacements accommodated down the specimen by

delaminations. In this particular example, it is not evident that kink bands ever formed. In most

other tests where extensive delamination occurred, however, kink bands appeared to be triggered

by delaminations and contributed significantly to failure.

Delamination and other factors influencing strain to failure will be discussed further in

Section 3.2.

14



(a)
_CP.O fO4T.021 _94

(b)

2 mm

2 mm

Fig. 7 Comparison of compressive failure of cuboidal specimens of (a) a lightly compacted
composite (/-T-l) and (b) a heavily compacted composite (h-L-l) that failed by
delaminating.

3.1.2 Tension Tests

Uniaxial tension test data are summarized in Table 6 and representative load-strain histories

are shown in Fig. 8. The strains of Table 6 and Fig. 8 were measured by a clip gauge of 1 cm

gauge length attached to one of the machined sides of the specimen. The output of the clip gauge

was the controlled displacement during the test. Nonlinearity is evident at stresses over half the

peak load for both lightly and heavily compacted composites. However, whereas nonlinearity

sometimes appears to be reversible, elastic deformation in compression, in tensile loading it is

associated with resin microcracking. The heavily compacted materials are far stronger than the

lightly compacted materials, with strengths often exceeding 1 GPa. The strains to failure are

ostensibly large, much higher than those of 2D laminates, but the quoted numbers and the

abscissae of Fig. 8 should be interpreted with care. They do not reflect material constants, but are

strongly influenced by whether large tensile cracks fall within the clip gauge field, as discussed

below.
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Table 6

Preform Label

Tension Test DatamLoading in Stuffer Direction

Peak Measured Rule of Mixtures

Load Modulus Strain to Modulus b

(MPa) (GPa) Failure a Ex (GPa)

l-L-1 300 + 50 30 + 6 0.015 + 0.005 36
l-L-2 240 + 10 28.5 0.03 + 0.01 41
l-T- 1 350 27 0.04 48
l-T-2 240 39 0.02 49
l-O 390 + 30 30 + 2 0.022 + 0.002 51

h-L-1 980 + 20 85 + 8 0.018 96
h-L-2 935 80 0.039 85
h-T-1 840 79 0.038 92
h-T-2 895 72 0.013 89
h-O-1 1070 88 0.013 96

h-O-2 850 69 + 5c 0.013 + 0.001 86

a Interpret with caution! See text.

b From Eq. (3), with As = fs.

c Bilinear stress-strain curves: the figure shown for the modulus is the average over the whole
range of the test.

Detailed examinations of tensile failure mechanisms were made for all composite types.

Photographs of gauge sections taken during tests were examined by stereoscopy to reveal relative

displacements across cracks, strain fields in intact regions, and overall pictures of damage. The

principal damage events in both the lightly and heavily compacted composites are matrix cracking

(both tensile and delamination), tow rupture, and tow pull-out.

The main load drops observed in stress-strain records, e.g., Fig. 8, were caused by the

rupture of one or more aligned tows. When a tow ruptures, it almost always fails across its entire

cross-section. Matrix cracking around the circumference of the failed tow then debonds it from the

surrounding composite, so that any stress concentration is minimized and neighboring aligned

tows commonly remain intact. Sliding along circumferential debond cracks typically extends

several mm from the location of the rupture.

The rupture of an aligned tow is also associated with matrix cracking that separates fillers,

which are the orthogonally disposed tows in the current experiments (Fig. 9). Inspection of

specimen sections reveals that such interfiller cracks begin at strains exceeding ~ 0.6% for lightly

compacted composites and - 1% for heavily compacted composites. They become widespread after

16
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Stress-strain records for dogbone specimens of (a) lightly compacted and (b) heavily

compacted composites under unaxial tension.

loading to high strains in all specimens studied, with the unexplained exception of the lightly

compacted material l-O. The layers of resin between fillers are clearly much weaker than the fillers

themselves, since the fillers are rarely seen to fail internally. The interfiller cracks are analogous to

the multiple cracks found in the 90 ° plies of 0°/90 ° laminates, except that their spacing is dictated by

the filler size rather than the mechanics of stress relief.
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I< lcm >I

Fig. 9 The separation of fillers under tension in the stuffer direction in an orthogonal interlock
composite (h-O-1). Arrow at A shows simple fracture between fillers. Arrows at B show
instances of fracture followed by falling away of pieces of resin.

As the number of ruptured stuffers increases, interfiller cracks on one or more planes

develop large openings, until a macroscopic "tension crack" is evident (Fig. 10). Such tension

cracks may traverse the whole specimen, but since stuffer failures are not generally coplanar, they

remain bridged by intact stuffers. One tension crack will commonly cause ultimate failure when the

bridging stuffers fail and are pulled out of the fracture surfaces (Fig. 10). Tension cracks that have

been caught within the field of view of photographic records may have opening displacements of

several tenths of a mm when the load is still near the peak load. Pullout distances for bridging

stuffers may exceed 1 cm. The case of Fig. 10b shows broken tows that sustained weak pullout

loads when the total displacement equalled the length of the specimen gauge section.

Tension cracks do not always cross the whole specimen. When viewed on a cut side of the

specimen, they are seen occasionally to terminate at a delamination crack running parallel to the

load axis between a layer of stuffers and a layer of fillers. Ultimate failure may then consist of

separation of the specimen along a path comprising the first tension crack, the delamination crack,

and a second tension crack traversing the rest of the specimen. The two tension cracks may be

offset from one another by - 1 cm. More complex systems of tension and delamination cracks

might be expected in large specimens and are common in bending (see below). Reciprocally, when

the failure path involves delamination and offset tension cracks, specimens under uniaxial loads

develop local bending because of broken symmetry.

The strains reported in Table 6 and Fig. 8 will obviously depend strongly on whether or

not a tension crack falls within the field of the clip gauge extensometer. If one does, then high
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Fig. 10 (a) A lightly compacted composite (/-T-l) and (b) a heavily compacted composite (h-O-l)
after testing in uniaxial tension.

strains to failure will be recorded. If not, the measured strain may actually decrease when a tension

crack forms elsewhere and relieves the load. In this case, truncated stress-strain curves result, such

as those for materials h-L-2 and h-O in Fig. 8(b). Thus the strains to failure quoted in Table 6

should not be regarded as material constants, but merely suggestive of high damage tolerance. A

meaningful quantification of damage tolerance should be based on laws for tow pullout (vide

infra).

While stuffers account for most of the composite strength in the orientation chosen for the

experiments, significant bridging of tension cracks may also be supplied by warp weavers.

Because they are initially curved, warp weavers qua bridging ligaments are relatively soft, but

survive high crack opening displacements.
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Matrix cracksform notonly normal to the applied load, but also to a lesser extent at other

angles under the influence of the local orientation of tows. Significant matrix cracking is usually

found prior to any stuffer failures, typically at loads above half the peak load, and is correlated

with macroscopic softening.

There is some evidence of residual stresses in the matrix. Sensitive strain measurements*

reveal net compressive strains in the matrix in unloaded cracked specimens relative to the same

specimens when unloaded and undamaged, which suggests that the cracks have allowed partial

relaxation of tensile residual stresses. The relaxation of residual stresses is also thought to be

responsible for the observed normal opening of delamination cracks that lie parallel to the load

axis.

3.1.3 Bending Tests

In the presentation of bending test data, all stresses and strains refer to those that would

exist in the outer layer of material on the tensile side of the specimen if the material was

homogeneous, given the load and load point displacement. Some simple remarks on the effects of

inhomogeneity on strength follow in Section 3.2.

Figure 11 (a) shows a four-point bending test of a lightly compacted layer-to-layer angle

interlock specimen. Failure began at the center of the beam with kink band formation on the

compressive side followed by tow rupture on the tensile side. Very limited delamination occurred

on the tensile side only. The material exhibits considerable ductility. Figure 1 l(b) shows three-

point bending data for the same material. As indicated in the figure, the main load drops are

correlated with the kinking and rupture of stuffers. Once again delamination is very limited.

Four-point bending tests of some heavily compacted materials were spoiled by extensive

delamination between the outer loading pins. Since shear was evidently a principal failure mode for

these composites, all further tests were conducted in three-point bending. With some variance from

test to test duly noted, representative load-strain records are shown in Fig. 12, where significant

load drops are annotated with corresponding observations. Of the heavily compacted materials,

both the layer-to-layer angle interlock (Fig. 12a) and orthogonal interlock (Fig. 12b) types showed

significant delamination, although it was less in the latter. Both types of through-the-thickness

angle interlock (Figs. 12c and 12d) showed no significant delamination. Where delamination

occurred, it frequently ran from the center of the beam all the way to one end and was always

* Stereoscopy and automated differential displacement analysis. See [11] and [ 12] for details of these methods.
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Test results for lightly compacted layer-to-layer angle interlock specimens (type l-L-1 of

Table 1) in (a) four-point bending and (b) three-point bending.

accompanied by a large load drop. Shear displacement discontinuities of up to 1 mm are commonly

observed across delaminations that have run the specimen, yet the delaminations remain bridged by

intact warp weavers (Fig. 13). Some striking periodic patterns were produced on the upper and

lower surfaces of the specimen in such cases, where the near-surface extremities of bridging warp

weavers have been pulled down strongly into the body of the composite (Fig. 13).

In summary, bending tests reveal much the same failure mechanisms for stuffers as

uniaxial tests, namely kink band formation on the compressive side followed by tow rupture on the

tensile side. In correspondence with behavior under unaxiai compression, the strain to failure in

bending tends to be larger for the lightly compacted composites than for the heavily compacted

composites. Substantial delamination does not occur in lightly compacted composites in bending.

Whether it occurs in heavily compacted composites depends on the reinforcement architecture.
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Fig. 12 Test results for various heavily compacted composites in three-point bending.
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A delamination crack created in a specimen of type h-O- I by three point bending, with
large mode II crack opening displacement. The upper surface shows systematic damage
caused by warp weavers that bridge the delamination crack.
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3.1.4 Compression After Impact

Tests of compressive strength after impact were made for some of the heavily compacted

composites. Rectangular specimens were impacted by Professor George Springer and colleagues at

Stanford University. The impact was effected by a Teflon projectile fired by an air gun. Several

velocities were used and the damage produced probed by x-ray radiography. A circular zone of

damage of about 1 cm in diameter was found for the highest velocity, which corresponded to an

impact energy of - 10 ft-lb (13.5 Nt-m).

Table 7 compares residual strengths after impact with the data for pristine dog-bone

specimens. Ignoring the case that terminated prematurely via Euler buckling, the loss of strength is

~ 20%. This is close to the reduction that would be expected from net section considerations. The

impact damage affects stuffers within a volume of width approximately 1 cm and depth

approximately 2 mm, while the impacted specimens were approximately 2.5 cm wide and 0.5 cm

thick. If all stuffers within the impact zone are assumed to have zero strength and stiffness, the

average load on the remaining stuffers must rise by a factor 1.25/1.05 _- 1.2. Thus the strength

should fall by -20%. Further justification for using net section estimates appears in

Section 3.2.3.

Table 7

Compression After Impact

Composite Pristine Strength a
Label (MPa)

Compressive Strength

After Impact b

h-L- 1 670 345 e

h-T- 1 570 510
h-T-2 540 435
h-O-1 635 470

aFrom Table 5 - dog-bone specimens.

blO fl-lb (13.5 Nt-m) applied by Teflon projectile.

cSpecimen failed by Euler buckling.
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3.2 Theoretical Estimates of Properties

3.2.1 Modulus

Reasonable estimates of Young's modulus in the loading direction (i.e., the direction of the

stuffers) can be found by appropriate rules of mixtures. For this purpose, it is expedient to separate

fibers into those lying in stuffers and all others, not discriminating fillers and warp weavers among

the latter. Let V be the volume fraction constituted by all fibers and fs the fraction of all fibers that

lie in stuffers. If As is the area fraction occupied by stuffers on a section normal to the load axis(

then the axial Young's modulus, Es, for a stuffer is by rule of mixtures

Es- f-_---Ef + (1- fsVI Er
As '_ As !

(1)

where Ef is the axial modulus of the fibers and Er the modulus of the resin, which is assumed

isotropic. The remaining resin and fibers, i.e., those in the fillers and warp weavers, may be

considered to form an effective medium whose modulus, Em, may be approximated in the direction

parallel to the stuffers by*

v 1 I-(1-(1-fs)Vl 1]-' (2)Em---L(.-_ s Ef 1-As ]ErJ

Young's modulus, El, of the entire composite in the direction of the stuffers is approximately

El " AsEs + (1 - As) Em . (3)

If Ef >> Er, as for graphite/epoxy composites, the dominant term in El is thus fsVEf, which is

independent of As. This has practical importance, because it is often difficult to assign an area

fraction to stuffers when examining cross-sections of composites. The cross-sections of stuffers

and indeed all tows are often heavily distorted and variable; and measuring As is further

complicated by resin-rich regions between tows. On the other hand, V can be measured accurately

by acid digestion, while fs is known accurately from the records of the weaver. Since El is weakly

dependent on As/fs for feasible values of As, it is expedient here to use the approximation As = fs.

* Equation (2) is a reasonable approximation for fillers, which are loaded transversely by loads parallel to the
stuffers. Warp weavers, on the other hand, lie roughly at 45 ° to the stuffers and might be thought to offer stiffer
resistance than intimated by Eq. (2). However, warp weavers constitute a relatively small volume fraction and their
effective modulus is often reduced by crimping. Thus the error should be minor.
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Using the manufacturer'sdatumEf = 250GPafor AS4 fibers, the values Er = 3.5 GPa

for the Shell 1895 resin and Er = 2.8 GPa for Taxtix 138 with H41 hardener (both measured by the

authors), and the fiber volume fractions of Table 2 with As = fs, one finds from Eq. (3) the

estimates of Ex for loading in the stuffer direction that are shown in the right-hand column of

Table 6. (In estimating El for composites l-L-2 and I-T-2, the significance of having S-2 glass

rather AS4 warp weavers was assayed by letting the modulus for the S-2 glass warp weavers be

either zero or equal to that of AS4 fibers. The values so computed for El differed by less than 1%;

which one would expect since the warp weavers have low volume fraction and influence El via the

relatively small term Em only.) The estimates are 20-50% higher than the experimentally measured

values for the lightly compacted composites and 10-20% higher for the heavily compacted

composites. These discrepancies are consistent with rough estimates of the effects of the stuffer

waviness noted in Section 2. Waviness leads to lower effective moduli, because the reaction of a

wavy tow to an aligned load is not merely to extend but also to straighten.

3.2.2 Strength

Compression

Kink band formation in fibrous polymer composites is mediated by shear deformation of

the matrix [ 13,14]. Under the simplest assumptions concerning the geometry of the kink band, the

critical axial stress for kinking, Gk, is given by [ 13-15]

Ck = '_r/_ , (4)

where 'l:r is the critical stress for shear flow in the resin and _ is the angle by which the fibers are

misaligned with respect to the applied load axis. Equation (4) obtains for an infinite array of

uniformly misaligned fibers, whereas the kink bands of interest here exist within single, finite tows

whose misalignment varies continuously and randomly along their length. The extent to which

such details influence the criterion for kinking has not been studied. With such doubts set aside in

the spirit of identifying trends, some useful numbers emerge when measured values of Xr and _ are

substituted into Eq. (4).

The critical shear stress, Xr, was deduced to be - 75 MPa from tension tests on +45 °

laminates (see Appendix B). The misalignment angle _ was measured on photographs of stuffers

exposed on several sections cut perpendicular to the filler direction, since the most severe stuffer

deflections always occur normal to fillers. The sections revealed all the stuffers in a volume of

material approximately equal to that of the gauge section in dog-bone tests (as in Fig. 5). Since
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there are rarely more than two load drops prior to peak load in compression tests, the attainment of

peak load was somewhat arbitrarily equated to the occurrence of the second kink band. Thus the

angle _p corresponding to peak load was taken to be the second greatest misalignment angle

measured anywhere in a given set of sections. The results of these procedures are shown in

Table 8. The critical value, O(ak), of the applied stress at which kink bands first form is related to

Ok by

o'(k) = _t 1 Gk - AsOk , (5)

where As is the area fraction constituted by stuffers on planes normal to the stuffer direction, which

can be approximated by the fiber fraction fs of Table 2. The values of o'(ak) are encouragingly

consistent with the experimental results of [9] and Tables 3 and 4, reinforcing the view that kink

band formation is the essential mechanism of failure.

Estimates

Table 8

of First Kink Band Formation

Measured

Zr _b ffk = "Cr/_b if(k) = Asffk Ultimate

Material (MPa) (radians) (MPa) As (MPa) Strength a
(MPa)

l-L- 1b 75 .....

l-L-2 75 0.21 380 0.385 140 150±lO
l-T-1 75 0.23 350 0.41 135 155+5
I-T-2 75 0.17 460 0.38 165 2005:5

l-O 75 0.26 300 0.39 110 _b

h-L-1 75 0.052 1520 0.58 850 670
h-L-2 75 0.087 915 0.58 495 695
h-T-1 75 0.087 915 0.57 485 570
h-T-2 75 0.087 915 0.59 505 540
h-O-1 75 0.070 1145 0.59 635 635

h-O-2 75 0.070 1145 0.54 575 555±15 c

a From Tables 4 and 5.

b Not measured.

c Experiment gives a lower bound for O'(ak), since failure was by Euler buckling.
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Tension

The manufacturer quotes a strength of 4 GPa for AS4 fibers.* The stress, t_s, in the fibers

in the aligned tows (stuffers) is approximately related to the applied stress Ca by

Os - E_I Oa , (6)

with E1 given by Eq. (3). For the values given above for Ef and the estimates of Table 6 for El,

Eq. (6) would imply that tow rupture should occur at tensile stresses of 500-700 MPa for the

lightly compacted composites and ~ 1.5 GPa for the heavily compacted composites. In fact, the

measured composite tensile strengths are roughly half to two-thirds of these estimates (Table 6).

There are several likely causes of strength degradation. 1) Prior to weaving, AS4 yarns are

wrapped with polyvinyl alcohol threads to prevent spreading. The polyvinyl alcohol is removed

with hot, distilled water when the weaving is completed. Some chemical degradation of the fibers

is possible. 2) The rigors of the weaving process are always likely to damage tows. 3) As shown

in Section 2, both the weaving and consolidation processes result in deformation of tows.

Nominally aligned tows that are not straight will have a lower effective modulus, leading to

overloading of neighboring tows that are straight. 4) A misaligned, kinked, or nonuniformly

squashed tow may be weaker than a straight tow. 5) Lateral loads are induced on aligned tows by

the reaction of warp weavers to in-plane tension, which may reduce their strength.

Some of these factors also differentiate 2D laminates of plain weave fabric and

conventional, nonwoven 2D laminates. Prior studies of graphite/epoxy composites in these classes

have shown that the strength of 2D woven laminates under loads aligned with the warp tows is

15-25% lower than in comparable 00/90 ° laminates, while differences in fiber volume fraction are

only - 10% [16]. Further research is required to determine which factors account for the strength

reduction in 3D woven composites being considerably greater than this. For the moment it is

enough to say that existing 3D woven composites are probably far from optimal in tensile strength.

Bending

p

The ratio of the average stress t_s, in the outermost layer of stuffers in pure bending to the

nominal stress, _surf, quoted in Figs. 10 and 11 is approximately

* Data sheets of Hercules, Inc., Wilmington, Delaware.
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c----L= 1 - 2 t f _ t_ , (7)
asurf t t

where ts is the thickness of a stuffer ply, tf is the thickness of a filler ply, and t is the specimen

thickness. The ratio of the ply thicknesses is approximately

tf_ n ff

ts n+l fs
(8)

while

n ts + (n + 1) tf = t , (9)

where n is the number of layers of stuffers. For the values of fs and ff in Table 2, Eqs. (7) through
• ff

(9) yield _s/O su _- 0.7 for the composites for which n = 4 and 0.8 when n = 6.

Multiplying the peak loads in Figs. 11 and 12 by these values of the ratio t_/o "surfprovides

estimates of the local compressive stresses at which kink bands formed. The resulting stresses,

shown in Table 9, are remarkably higher than the ultimate strength under uniaxial compression in

all cases (Tables 3-5).

Preform Label

Table 9

Critical Compressive Loads in Bending Tests

Critical Value of Nominal
Surface Stress

(MPa)

Critical Value of Estimated

Stress in Outermost Stuffer a

(MPa)

l-L-1 285 + 25 200 + 20
h-L-1 1035 + 35 725 + 25
h-T- 1 1070 750
h-T-2 895 625
h-O-1 930 650

a from Eq. (7)

Similarly high compressive strains in unidirectional graphite/epoxy composites under

bending have recently been reported elsewhere [17]. In [17], the possibility was considered that

the high compressive strains might be enabled by constraint of microbuclding by the curvature
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induced by bending. This mechanism was ultimately rejected in [17] on the grounds that

microbuckling should occur in the plane of the surface, rather than out of the surface; it would be

unaffected by the curvature of the specimen and would therefore occur at the same lower stress that

would be expected for uniaxial loading. However, the universal observation for the 3D woven

composites studied here is that microbuckling of near-surface stuffers does involve deflections out

of the surface. For the orientation in which specimens were tested here in bending, in-plane

deflections of stuffers on the compressive surface of the specimen would have to occur in the weft

direction and would therefore be strongly resisted by fillers.

The simple expression of Eq. (4) for kink band formation was derived for an infinite array

of fibers. No analogous criterion is available to account for the presence of a free surface.

However, one might conjecture that buckling of a stuffer out of a surface, a precursor to kinking,

will occur most readily at locations where tow waviness lends the stuffer maximum convex

curvature when viewed from outside the specimen. This conjecture is supported by moir6

interferometry of woven composites in uniaxial compression. Such figures show segments of

stuffers arching out of one specimen's surface at locations where kinking subsequently occurred.

In bending, the curvature of any tow segment will become the sum of that associated with tow

waviness and the concave curvature produced on the compressive surface by the applied load. The

maximum convex curvature in a given specimen will be reduced. The stress required to force some

segment of a tow to arch out of the specimen will thus be raised; and if such arching is a

prerequisite for kinking, the critical stress ak will also be raised. Further work is required to test

this conjecture.

3.2.3 Ductility and Notch Sensitivity

Since it dealt with the failure of individual aligned tows in the stress field of an undamaged

composite, the discussion of the previous section pertains strictly to the critical stress, in either

compression or tension, for isolated tow failures. How the material progresses thence to ultimate

failure depends on the distribution of flaws and how loads are redistributed around the site of each

local failure event. The possibility of composite strength exceeding the stress of first tow failure,

high strain to ultimate failure, and notch insensitivity are all favored by flaws that are widely

distributed both spatially and in strength and by mechanisms of stress relaxation around each tow

failure site.

In compression, the essential flaws are geometrical in nature, comprising random

misalignments, which are reflected in _ in Eq. (4), and certain topological characteristics of the
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reinforcement,which causelateral loadsin alignedtows. Lateral loads knock down the critical

stress for kink band formation [14,15]. Kink bands are most commonly observed where

misalignment is greatest and often near configurations such as that depicted in Fig. 2. (Whether the

correlation of kink bands with the deformity of Fig. 2 is attributable to lateral loads or whether it

arises wholly because tows are exceptionally misaligned there is impossible to tell from the

experimental observations made so far.)

In tension, the nature of the essential flaws has not been established. Geometrical

irregularity may be a factor, as surmised in the preceding section, but the mechanics of such effects

have not been studied. Whereas kink band formation in compression is not influenced to first order

by the inherent properties of the fibers [e.g., 13-15], that is not so of strength in tension. Inherent

fiber variance will lead by itself to a Weibull distribution of tow strengths.

Stress redistribution around a site of tow failure has now been observed in both

compression and tension to be moderated by debonding of the failed tow from the surrounding

composite. Accurate strain mapping by stereoscopy reveals large discontinuities in the axial

displacement across the debond. It is likely that the implied sliding is governed by friction. The

observed sliding lengths are typically many times the tow diameter, which invites analysis by the

usual, simple shear lag theory. Let xf denote the critical shear stress at which sliding is activated.

Assuming "t:fto be uniform over the debond and that the kind band supports negligible axial load,

the sliding length, Is, satisfies

S/s"l:f = GtA , (1 O)

where s and A are the circumference and cross sectional area of the tow and at is the axial stress it

bears beyond the sliding zone. The degree of stress concentration in tows neighboring a failed tow

diminishes with increasing sliding length and therefore increases with the magnitude of "of. In a 3D

composite, xf will be strongly influenced by triaxial local stresses generated even under uniaxial

loading by the through-thickness reinforcement (warp weavers). For fixed xf, the sliding length

also increases with the tow denier, which is reflected in Eq. (6) by the ratio A/s. The fact that large

slip distances are observed in the subject 3D composites is thus a direct consequence of the coarse

scale of the reinforcement.

Tension

In the tensile tests reported above, ultimate failure was associated with a band of damage

traversing the specimen. The band can be viewed as a dominant crack bridged by tows being
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graduallypulled out of its fracture surfaces (e.g., Figs. 9a and 9b). In all the tests reported here,

this crack spanned the specimen as soon as it was observable. However, for a sufficiently large

specimen, one might envisage such a bridged crack emanating a limited distance from a stress

concentrator such as a hole. The response of the material will then depend on the nature of the

bridging or cohesive zone. The detailed mechanics of the failure process are complex and

computationaUy challenging, but the essence will be as schematized in Fig. 14.

(a) crack

stress _/_'7"ilIHFIHIrllll
zone of zone of
stuffer matrix

pullout cracking

SC-0921 -E-O693

.Q
e-

E

(b)

P

Pc

0 ue uc u_'_

Fig. 14 (a) Conjectured distribution of damage in a large specimen under tension.
(b) Conjectured tractions acting over central damage plane vs crack opening displacement
(or half the displacement discontinuity across the damage plane).
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Figure 14ashowsa processzoneconsistingbroadlyof two parts. Furthest from the stress

concentration, damage will consist of interfiller cracks between intact stuffe_, a "zone of matrix

cracking". Nearer the stress concentrator, stuffers will have failed. Since the stuffer failures will

not all coincide with the main fracture plane, a "zone of tow pullout" will exist, within which failed

stuffers continue to transfer loads via friction. When the damage has propagated far enough, the

stuffers nearest the stress concentrator will pull entirely out from one fracture surface, forming a

traction free zone.

The fracture mechanics of this crack system are determined by the relation between the

tractions p acting across the crack and the crack opening displacement u (or displacement

discontinuity 2u). The problem is analogous to that of the pullout of fibers of random strength

from a brittle matrix composite [ 18,19]. Qualitative analysis leads to a relation p(u) schematized by

the dashed curve of Fig. 14b. In the zone of matrix cracking, the intact stuffers act roughly as

bridging springs, so p(u) will be an increasing function. When p = Pc, a value close to the ultimate

strength for loading along the stuffers, stuffer failure will commence. The corresponding value Ue

of u will be relatively small, because stuffers deform elastically for u < ue. At higher

displacements, p(u) will fall monotonically, vanishing when u = Uc at the trailing end of the zone of

tow pullout.

In describing the extension of a single band of damage from a stress concentrator, the brief

rising part of p(u) has no significant role. (Material properties that do depend on the rising part of

p(u) are reviewed in [20]). Since Uc >> Ue for the composites studied here, p(u) can be idealized by

the solid line in Fig. 14b.

The fracture process could also in principle be influenced by the work required to advance

the zone of matrix cracking, i.e., to form new interfiller cracks. However, this energy is much

smaller than that required to pull out failed stuffers. This suggests the closure condition that no

stress singularity should exist at the tip of the zone of matrix cracking. The much studied cohesive

zone model with tension softening cohesive forces then results.

In such cohesive zone models, a fundamental role is played by the characteristic length,

lch, defined by [21-23]

lCh= ucEc (II)
Pc
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The length of the cohesive zone is given to order magnitude by/ch. When the specimen width is

less than/oh, the material will be notch insensitive, with the ultimate strength approximated by the

condition that the net section stress should equal Pc (e.g., [23,24]). In large specimens, notch

sensitivity exists only for notches much larger than/ch.

Estimates of Ec, uc, and Pc for the subject woven composites and the resulting values of/ch

are shown in Table 10. The values of Ec are taken directly from Table 4. The estimates of Pc are the

strengths of Table 4. The ranges shown for Uc correspond to the range of measured tow pullout

lengths. The resulting values of lch are substantial fractions of 1 m. If such high values are

realized, then in all practical applications, these materials will be notch insensitive and damage

tolerant under tensile loads.

Table 10

Estimates of Cohesive Zone

Lightly Compacted Composites

Heavily Compacted Composites

(GPa)

30

80

Lengths for Tension Cracks

uc pc Ich
(mm) (GPa) (cm)

1-5 0.3 10-50

1-5 0.9 10-50

The length lch will be reduced if the effective pullout length is reduced. The pullout length

will decrease if the distribution of flaw strengths decreases in width, vanishing when all tows fail

at a single strength [18,19]. If tow rupture and sliding are accompanied by disintegration of the

surrounding composite, bridging tractions will be lost at smaller tow displacements and the

effective pullout length will again be reduced.

If Uc is reduced by a factor of 10 from the lower end of the estimated ranges of Table 10,

then significant notch sensitivity would arise in practical applications.

On the other hand, damage tolerance in tension can be enhanced by appropriate composite

design. The critical displacement uc and therefore /ch can be made large by 1) using coarse

reinforcement (large tow denier) and 2) building in spatially distributed flaws in aligned tows. In

the latter regard, the conjecture that tow tensile strength is lowered by lateral loads (which can be

imposed intentionally through the choice of weave architecture) is worth pursuing. Rarely has a

class of materials promised such scope for tailored properties.
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Compression

The high compressive strains to failure measured in lightly compacted composites contrast

with the brittleness of stitched quasi-isotropic laminates [9]. The principal distinction between the

two groups of materials lies in the distribution of flaws. Stitched laminates are heavily compacted

and the laminas in them are relatively fiat and well aligned. The critical stress for kink band

formation is therefore relatively high and such geometrical flaws as exist are distributed narrowly

in strength. Consequently, the first kink failure occurs usually in an outside ply at a stress near the

critical stress for kinking of its neighbor. The stress concentration around the fu'st failed ply causes

immediate failure of the neighbor; and so the damage propagates unstably across the specimen. In

the lightly compacted 3D woven composites, geometrical flaws are distributed broadly both

spatially and in strength. The first tow failure is generally associated with a severe flaw. The

resulting stress concentration may not suffice to fail neighboring tows, which may have no major

flaws in that vicinity. The next failure event is then at a distant site uncorrelated with the first; and

so damage accrues in a spatially distributed fashion and the material is ductile.

The heavily compacted composites are appreciably more regular than the lightly compacted

composites. Heavy compaction has minimized distortion of stuffers, the principal load bearing

tows. However, residual distortions such as those depicted in Fig. 2 still constitute geometrical

flaws more severe than those found in stitched laminates. Consequently, one would expect the

heavily compacted composites to display damage tolerance and ductility in compression lying

between those of the lightly compacted composites and stitched laminates. This is indeed the case.

Compressive strength, on the other hand, is likely to be degraded by geometrical

irregularity. Table 11 compares the ratio of compressive strength to fiber volume fraction for the

lightly and heavily compacted composites. In composites of equal irregularity, this ratio would be

expected from Eqs. (4) and (5) to be constant. It tends to be much greater for heavily compacted

than for lightly compacted composites.

Thus the lightly and heavily compacted composites demonstrate an essential balance in the

properties of woven composites. While reduced geometrical irregularity in the latter leads to higher

compressive strengths than would follow from consideration of volume fraction alone, this comes

at the price of reduced strain to failure in compression.
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Table 11

Variation of Compressive Strength with Fiber

Preform Label

l-L-1 c

l-L-2 c

l-T-1 c

l-T-2 c
l-O

Strengtha/fs Vb
(GPa)

1.6

1.0

0.9

1.1

Volume

Pre form Label

h-L-1

h-L-2

h-T-1

h-T-2

h-O-1
h-O-2

Fraction

Strengtha/fs Vb
(GPa)

1.8

2.1

1.6

1.6

1.8
1.7

aStrength for dog-bone specimens.
bproduct fsV from Table 2.

cStrength from Table 4.

Apart from questions of flaw distribution, compressive failure in the heavily compacted

composites is also affected by the occasional observation of delamination and subsequent Euler

buckling. This failure mode is not observed in either the lightly compacted composites or in

stitched laminates, where any delamination cracks that occur remain small rather than propagating

the length of the specimen and there is no buckling of the material on either side of them. A simple

model of the role of through-thickness reinforcement in bridging such delamination cracks has

been presented in [25] and [26]. Under uniaxial loading, buckling must precede delamination crack

growth, since otherwise the specimen remains flat and there is no crack driving force. Through-

thickness reinforcement raises the critical stress for buckling by providing an elastic foundation for

the material on either side of any delamination crack. If buckling is thus suppressed, the

delamination crack will not propagate and failure proceeds via kink band formation.

The efficacy of the through-thickness reinforcement depends on the effective stiffness it

supplies in acting as an elastic foundation, which depends on the denier and fiber type of the

through-thickness tows and their volume fraction. A lower bound to the foundation stiffness can

be calculated by assuming that the through-thickness tows transfer load to the rest of the composite

only at their extrema. In stitched laminates or through-the-thickness weaves (preforms whose

labels contain T or O in Table 1), the extrema lie at the specimen surfaces. Simple estimates can

then be made of the minimum volume fraction required to suppress buckling at loads up to that for

failure by kink band formation. This critical volume fraction is independent of the delamination

length [25,26]. For current stitched laminates, the stitching density is probably one or more orders
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of magnitude greater than required to meet this criterion [26]. In this regard, the stitched laminates

are overdesigned.

In woven composites with the volume fractions of Table 2, the same ought to be true [26].

However, the warp weavers in woven composites are distorted during consolidation, especially, as

one would expect, in the heavily compacted composites (Fig. 4). The distortion can greatly reduce

the effective stiffness of the warp weavers under through-thickness loads: they deform in shear

rather than in tension. The degradation is evidently so severe in the heavily compacted composites

that the elastic foundation can become too soft to suppress buckling, and failure by kink band

formation is sometimes not achieved. Confirmation of this conjecture was sought by measuring the

longest delamination crack visible on the sides of specimens subjected to approximately the same

applied compressive strain. These measurements are plotted in Fig. 15 against the ratio of the net

composite thickness (Table 2) to the average thickness of the dry fiber preform as received from

the weaver. The severity of warp weaver crimp seen on sections of specimens is in qualitative

correspondence with this ratio. So too is the propensity for delamination, as evident in Fig. 15. As

expected from differences in constraint, Fig. 15 also shows a tendency for delamination to be more

pronounced in dog-bone specimens than in cuboidal specimens. Figure 15 clearly demonstrates the

virtue of achieving high fiber volume fraction by controlling the weaving process rather than

applying heavy compaction loads during consolidation.
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Fig. 15 Maximum delamination crack length observed as a function of the degree of through-

thickness compaction achieved in consolidation. The preform type and compressive
strains at which measurements were made are marked at the top of the figure.

Compression After Impact

Provided failure occurs by kinking rather than by delamination and buckling, a simple

extension of the idea of the cohesive zone used for notch sensitivity in tension could be used to

estimate residual compressive strength after impact (e.g., [28]).

Consider the impact damage zone to be a hole, which is an extreme assumption of the

damage state and should lead to conservative strength estimates. Upon compressive loading,

kinking will propagate out from this stress concentrator, much as tow rupture would progress in

tension (Fig. 14a). Bridging tractions, in this case propping the crack open and shielding

unkinked stuffers ahead of the damage zone from compressive loads, will arise because of the kink

lock-up mechanism discussed below in Section 6 and Appendix D. This amounts to a compressive

cohesive zone, which will have some characteristic length lch in analogy to that of Eq. (11). We

37



have insufficient knowledge of the mechanics of kink initiation and stress redistribution following

kinking to make good estimates of /oh. However, our qualitative observations of damage

mechanisms suggest that compressive cohesive zones of the order of several cm. are feasible for

these coarse woven composites. In that case, the success of net section considerations in estimating

strength after impact in Section 3 would be no surprise. The damage zone there was only -- 1 cm.

Further research on this idea would seem warranted.

Fatigue

Compression-Compression

Strain-life tests were executed under uniaxial, compression-compression loading using

dog-bone specimens. Results for lightly compacted composites are shown in Fig. 16, with the

data for one cycle being the monotonic data of Table 4.
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Fig. 16 Stress-life data for lightly compacted woven composites under uniaxial compression-
compression fatigue.

Woven composites and stitched laminates have a similar contrast in fatigue to that observed

in monotonic loading. A few fatigue tests for stitched laminates showed very flat S-N curves: an

increase in load of 10% (from 38 ksi to 42 ksi for the specimens tested) reduced a fatigue life

exceeding one million cycles (run-out in test) to failure in one cycle. Figure 16, in contrast, shows

significant slope to the S-N curves.
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Figure 17showsstress-lifedatafor four of thehighvolumefraction (heavily compacted)
wovencompositessuppliedby Boeing.Thetestsshowthattheorthogonalinterlock architecture

yieldsthehigheststrength,while the layer-to-layerangleinterlockarchitectureyields the lowest

strength.This is consistentwith ourviewthatangledwarpweaversactasgeometricalflawswhere

they wrap aroundfillers, which canbequantifiedby measurementsof misalignmentanglesfor

stuffers.Thelayer-to-layerangleinterlock architecturehasthehighestmisalignmentangles;the

orthogonalinterlock architecturethe lowest.However,there is also substantialdelaminationin

someof theseweavesduringfatigue,apparentlydependingon theextentto which warp weavers
havebeencrimpedduringprocessing.Crimpingreducestheresistanceto delaminationby lowering

bridging tractions across incipient delamination cracks.
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Fig. 17 Load-life data for heavily compacted composites under compression-compression loading
(load ratio R = .oo).

The mechanics of failure in fatigue and monotonic compression.are evidently different.

Under monotonic loading, stuffer failure was preceded by extensive debonding of both warp

weavers and stuffers from the surrounding matrix, with the former debonding events apparently

initiating the latter in many cases. In fatigue, the order of events was quite different. Figure 18

shows the state of damage observed on the gauge section in a micrograph that was fortuitously

shot just a few cycles before failure in a specimen of type t-L- 1. While failed stuffers can easily be

seen, all warp weavers remain well bonded to the surrounding matrix. There is indeed very little

matrix cracking, in striking contrast to observations for monotonic loading. This feature has been

confirmed by sectioning fatigued specimens. While sectioning revealed interior stuffer kink band
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SCS3275

Fig. 18 One of the cut surfaces of a specimen of layer-to-layer angle interlock weave (e-L-1)just
prior to failure in compression-compression fatigue.

failures, the only matrix cracking appeared to be caused by those stuffer failures, rather than being

a cause of stuffer failures, as in monotonic loading.

We infer that stuffer failure occurs in fatigue by the accumulation of damage within an

individual stuffer. The damage is not triggered by events external to the stuffers, such as

debonding or other matrix cracking that might allow buckling. Instead, cyclic loading slowly

weakens the resin within the stuffer, reducing load transfer between neighboring fibers and

therefore the critical load for kink band formation.

One fundamental characteristic pervades observations for both monotonic and cyclic

loading. In both cases, woven composites exhibit damage tolerance, showing high strain to failure

in monotonic loading and significantly sloping S-N curves in fatigue. Furthermore, post-mortem

observations in both cases reveal damage distributed throughout the gauge section, in contrast to

the case for stitched laminates, which fail by highly localized kink bands in either monotonic

loading or fatigue.

4.2 Tension-Tension and Tension-Compression

The progression of damage under tension-tension or fully reversed loading is distinguished

from that in compression-compression fatigue by the relatively early appearance of matrix cracks
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normal to theappliedloadaxis.Thesemicrocracksincreasein densitywith cyclesand occurat
tensileamplitudesin theelasticregimeof monotonictensiondata.

Although the matrix crackscausea modestincreasein specimencompliance,ultimate

failure is theresultof tow rupture.Neitheris thereanyevidencethat thematrixcrackingdirectly

inducestow failure. Instead,it wouldappearthatjust asin compression-compressionfatigue,tow

rupturein tensionsignalsthematurationof degradationthatis internalto the loadbearingtows.

Thereis againcorrelationbetweensitesof ruptureandmisalignment.

5. Models Appropriate to Different Aspects of Composite Behavior

The experiments reported above and elsewhere suggest that the mechanical properties of 3D

composites can be separated into two categories: those that can be predicted to within experimental

scatter by elementary models; and those than cannot, i.e., those for which our Binary Model is

designed. Table 12 summarizes this classification.

Problems for Which the Binary Model is not Required

Flat panels consisting of a single weave type behave as orthotropic bodies in the elastic

regime. Elastic constants are well approximated by combining rules of mixtures or other simple

models of unidirectional composites with orientation averaging models (or even standard laminate

theory) and some crude estimates of the softening effects of tow irregularity.

Unnotched strength in tension can be estimated from the strength quoted for pristine fibers

by the manufacturer, corrected for volume fractions. Unnotched strength in compression is

governed by the mechanics of kink band formation, following Eq. (4).

The extent of fiber pullout observed in unnotched tension tests (e.g., Fig. 10) suggests that

notch sensitivity in tension should be modeled via a cohesive zone of damage extending from any

stress concentrator. Within the cohesive zone, the mechanics of tow pullout will govern the relation

p(u) between the bridging tractions, p, acting across the damage zone and the displacement

discontinuity, 2u (or crack opening displacement, u). In Section 3, the characteristic cohesive zone

length,/ch, was shown to be to order of magnitude 0.1-0.5 m. The function p(u) can be deduced

directly from measurements of force and displacement on unnotched tensile specimens, as long as

the specimen width is much less than/ch, e.g., - 10 mm. Once p(u) is known, notch sensitivity

and the influence of part size and geometry on strength can be computed from the relatively simple

and well developed fracture mechanics of cohesive zones or bridged cracks.
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Table 12

Predicting the Properties of 3D Composites

(i) Some Properties Predicted by Simple Models

Property

Stiffness of flat coupons

Unnotched strength for aligned loads

Notch sensitivity/fracture toughness in
tension

Delamination and buckling

Model

Rule of mixtures/mean field models

Laminate theory

Rough estimates of the effects of tow irregularity
Compression: criterion for kink band formation

Tension: tow rapture strength
Cohesive zone model

Beams or plates on an elastic foundation

(ii) Some Problems Requiring a Computational Model (the Binary Model)

Problem Remarks

Stiffness/strength of integral structures

Progression of damage in monotonic
loading and fatigue
Localization/delocalization of damage
Open-hole compression
Fatigue near stress concentrators
Constitutive law for cohesive zone in
tension

Require stress distribution in tows in complicated
arrangements

Depend on local stress distributions, distributions of

flaws, and load redistribution following local
failure--stochastic problem

Delamination and subsequent buckling under monotonic compression, the primary

mechanism of failure against which 3D reinforcement has been introduced into polymer

composites, can also be modeled relatively simply. The delamination problem can be modeled by a

variant of existing laminate theories in which elastic springs couple separable laminae (e.g., [29]).

For 3D composites, the springs represent the through-thickness reinforcement. The problem of

buckling of delaminated layers in 3D composites can be described as that of classical buckling

plates on an elastic foundation [25,26].

For nearly all of the above properties, the 3D composite behaves essentially as a laminate of

homogeneous layers. The effects of the 3D weave or of irregularity in tow positioning are either

small or are determined by averages over large volumes of material. The sole exception is modeling

based on the concept of a cohesive zone, for which the crucial relation p(u) depends strongly on

the irregularity and geometrical details of the reinforcement. However, engineering predictions
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basedon the cohesivezonemodelcanbecompletedby determinep(u) experimentally;for this

particular purpose, the micromechanics underlying p(u) need not be modeled in detail (e.g., [30]).

Problems to be Solved by the Binary Model

Other important problems defy such relatively simple modeling. They are generally those in

which macroscopic behavior depends on the details of load distribution throughout the composite.

Some examples are given in part (ii) of Table 12.

One very important application of 3D composites is the fabrication of integral structures.

Two examples from weaving technology are integral box beams, containing predominantly axial

yams (stuffers) in the upper and lower surfaces, with -t-45 ° yarns (warp weavers) in the sidesl; and

integrally woven skin/stiffener panels (e.g., [31]). Because of the complex reinforcement

architecture in such structures, orientation averaging models are unlikely to be reliable even in the

elastic regime, especially at critical junction regions such as where two sides of a box beam or a

stiffener and skin merge. Predictions of stiffness and strength require the calculation of loads in

geometrically complex arrangements of tows.

While the effects of complex tow arrangements present a deterministic problem, several

other aspects of composite behavior depend on how random flaws are distributed in both strength

and space. These properties demand a stochastic model.

In compression, the more misaligned segments of tows will fail by kink band formation at

lower values of the local axial stress, following Eq. (4). If lateral loads also act on a tow as from

tow wrap-around, an additional shear stress, xt, is induced. For the simplest assumptions

concerning local fiber and kink band geometry, Ok is lowered further according to [ 15]

Ok = ['_r - "_l] / _k (12)

The tensile rupture of tows has not been quantitatively modeled. However, it seems

plausible that segments of tows that are unusually bent, squashed, or subjected to lateral loads will

have reduced tensile strength.

In both compression and tension, fluctuations in tow alignment also affect the onset of

nonlinearity by causing uneven load distribution. A tow segment with unusually high waviness is

I Ray Edgeson, Cambridge Consultants, Cambridge, UK; private communication, 1992.
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morecompliantunderaxial loadingthanonethatis alreadystraight. Straighter tow segments will

therefore bear a disproportionate share of the load and tend to fail early in loading.

Thus the onset of damage, whether under monotonic or cyclic loading, must depend on the

distribution of flaw strengths and the evenness of load distribution. The progression of damage at

higher strains will depend on both of these factors as well as the way loads are redistributed around

a local failure event. In both compression and tension, load redistribution around a kinked or

ruptured tow is mediated by friction acting around the periphery of the broken tow. The critical

stress for frictional sliding dictates the distance along the failed tow over which the tow is reloaded

to far field loads by load transfer, and it therefore dictates the range of interaction of flaws.

One important characteristic of damage progression is whether successive local failure

events form a localized band of macroscopic damage or whether they are delocalized and widely

distributed over the gauge section. A transition from localized to delocalized damage, manifested as

a brittle-ductile transition in compressive stress-strain curves, has already been noted for 3D

stitched and woven composites (Section 3). Quantitative analysis of the transition requires the

binary model, with an appropriately detailed solution of the statistics of local failure events and

load redistribution. Modeling the transition from localized to delocalized damage is the key to

modeling strain to failure and damage tolerance.

While predictions of notch sensitivity in tension can be made using an empirically

determined constitutive law, p(u), in a cohesive zone model, composite design requires

understanding how p(u) is determined by microstructure. Tow pullout lengths are determined

partly by the flaw distribution within tows, wider distributions favoring long pullout lengths (e.g.,

[ 18,19]. Pertinent flaws comprise both intrinsic strength variations and geometrical irregularities,

especially locations where cross tows might impose weakening lateral loads on an aligned tow.

Pullout loads are also influenced by transverse compression experienced by ruptured tows, since

pullout is resisted by friction. Transverse compression can be strongly enhanced by through-

thickness tows, which often survive the rupture of neighboring axial tows, by the mechanism

illustrated in Fig. 19. Computing how all these factors of reinforcement architecture and

irregularity influence p(u) is another application of the Binary Model.

The likely success of cohesive zone models for predicting notch sensitivity in tension is due

to the large values estimated for the characteristic cohesive zone length,/ch. Since damage is spread

over such large lengths before failure, details of the tow geometry near the stress concentration

have minimal effect. Stochastic quantities are sensed only in their averages over the cohesive zone.
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Fig. 19

SC-2878-CS

tension

warp

weaver /

Schematic of the development of transverse compression by warp weavers during tensile
loading. White arrows indicate the sense of loads imposed on neighboring tows by warp
weavers, which tend to straighten when strained in the direction of the load, even in the
elastic regime. The case shown is a layer-to-layer angle interlock weave.

In compressive loading or cyclic loading, where tow pullout lengths may not be as large as in

monotonic tension, the failure process could depend more critically on events confined to a

relatively small volume near a stress concentrator--perhaps containing only a few tows. If

experiments show such behavior (they are in progress), the Binary Model will be required to

compute the effects of notch shape, tow positioning, and random geometrical flaws.

6. Binary Model of a 3D Composite

The Binary Model is a finite element model, in which the highly anisotropic and

heterogeneous structure of a 3D composite is resolved into simple constituents: reinforcing "tows",

which primarily represent the axial properties of individual tows; and an "effective medium",

which represents all other properties of the tows, resin pockets, voids, etc. in an average sense.

The usefulness of this division rests on the fact that the axial modulus of the reinforcing fibers,

whether graphite, glass, or other material, is generally two orders of magnitude greater than the

modulus of the resin. The axial modulus of the fibers dominates strength and stiffness under

aligned loads, while the modulus of the resin dominates properties that depend on the effective

medium, notably the shear and transverse stiffnesses and Poisson's effect. When the model is

discretized, the tows are divided into two-noded line elements possessing axial rigidity only, with

no prescribed shear or bending resistance. The effective medium is divided into solid elements,

which, at least in the elastic regime, are defined to be homogeneous and isotropic. The effective

medium elements and the tow elements are coupled by imposing constraints between certain nodes

of each. The constraint will usually comprise an undamaged state, in which the nodes simply share

the same coordinates, and a damaged state, allowing some relative displacement. As in the real
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composite,no two reinforcing tows are coupled directly. They interact only via the effective

medium. Tow and effective medium elements are commensurate with the characteristic scale of the

reinforcement architecture, e.g., the distance between points at which one tow crosses two other

tows successively. Relatively large sections of the composite structure can thus be modeled in a

calculation with a modest number of degrees of freedom. In most cases, the volume modeled is

much greater than that of the hypothetical unit cell from which a geometrically ideal model could be

constructed by translation and repetition. In applications to date, the size of each model calculation

has usually been determined by the gauge section of some specimen being simulated.

Both tow and effective medium elements are nonlinear, with plasticity and local failure

incorporated in their assigned constitutive properties. The constitutive laws for tow and effective

medium elements also embody stochastic parameters.

Figure 20 shows a typical arrangement of nodes on tow and effective medium elements in

a small volume of a layer-to-layer angle interlock woven composite. In this particular architecture,

stuffers and fillers lie in orthogonal layers, while warp weavers supply through-thickness

reinforcement by looping above and below individual fillers in adjacent filler layers. This structure

lends itself to the cuboidal effective medium elements exemplified by the shaded volume in

Fig. 20.

As in any discretization of a continuous (or piece-wise continuous) body, there is some

arbitrariness in the choice of element size. The choice illustrated in Fig. 20 entails the minimum

density of tow nodes required to reproduce the topology of the reinforcement faithfully. A higher

density of nodes could be chosen, but that would betray the spirit of finding the simplest possible

realistic formulation. Nevertheless, as well as the assurance of computational precision in modeling

tows, other physical conditions must also be met in choosing the element size. These will be

discussed below.

Once the element size has been chosen, the length scale it introduces determines the way

geometrical fluctuations are treated. Thus, the irregularity of a tow that undulates over wavelengths

larger than the element size can be mimicked simply by displacing appropriate nodes on that tow in

the initial, load-free configuration of the model. If a geometrical property fluctuates over a length

less than the element size, the variation must be incorporated in the constitutive law provided for

that element. Some explicit examples of this will be given below.
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Fig. 20 Tow and matrix elements in a layer-to-layer angle interlock woven composite.

The conceptual division of the composite into tow and effective medium elements is

ultimately a matter of convenience. The end product is a nonlinear finite element model, which

must be equivalent to a model containing only solid elements, with the effects of the tow elements

incorporated in appropriate anisotropic and nonlinear constitutive laws. However, the geometrical

complexity of the reinforcement would oblige the definition of many different types of solid

element in such a model, depending on the local tow configuration. Furthermore, the treatment of

stress redistribution around a failed tow and the computation of local axial stresses in tows would

be cumbersome.

As in any finite element model, the boundary conditions remain unspecified in the general

formulation. In each application, either load or displacement conditions are specified for boundary

nodes. There is no restriction in principle on the distribution of the boundary forces or

displacements; or on the shape of the boundary itself.

47



6.1 Constitutive Laws for Tow Elements

The properties of tow elements follow from various elementary arguments.

Elastic Properties

The axial elastic modulus, Et, of a tow that is initially straight can be estimated by the rule

of mixtures:

Et = VtEf + (1-Vt)E r , (13)

where Vt is the volume fraction of fibers within a single tow and Ef and Er are Young's moduli for

the fibers and resin, the former measured axially. The axial stiffness, kt, of the corresponding tow

element in the binary model is given by

kt = (Et - Em) At (14)

where At is the tow's cross-sectional area and Em is Young's modulus for the effective medium

(specified below). The subtraction of Em in defining kt avoids double counting that would arise

because the effective medium elements fill all space. The area At is deducible from the length per

unit mass, y, of the tow (known as the "yield); the density, pf, of the fibers; and Vt according to

At = 1 (15)
VtPfY

If the tow is undulating initially, its response to axial loads ot can be described by the

differential axial displacement, u, between two points separated by some gauge length L:

U = Lot/E t + LE u -- I__ (16)

where eu is a strain contribution arising from straightening of the undulations. If the tow undulates

over periods greater than the element size, both of these terms will be computed as part of the

solution of the discretized model, with tow undulations entered explicitly as initial nodal offsets.

However, if the tow undulates over periods less than the element size, the second term in Eq. (16)

must be computed in advance by micromechanical modeling. The tow elements then possess a

possibly strain-dependent, reduced effective axial stiffness, Ee = dot/de.

Calculating Ee accurately is difficult. However, knockdowns due to waviness or

irregularity should never lower the composite modulus by more than 10-20%: if they do, the
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compositeis either poorly designedor badly fabricated. Experimentally measured scatter in the

macroscopic composite modulus is usually 5-10% in 3D woven or braided composites, while tow

waviness itself is difficult to characterize and its statistics difficult to measure. Therefore, it is

unlikely to be profitable to employ more than rough estimates for Ee. More usefully, simple models

of the effects of tow waviness or irregularity allow competing composite designs to be compared

or the effects of irregularity induced by processing to be estimated. Thus, Ee is simply written

Ee = _ Et (17)

where X is a random variable for the tow elements in a single simulation and typically _ :_ 0.9,

For large strains, Eq. (17) will generally be nonlinear: an undulating tow will stiffen as it

straightens. However, in most applications, it will be valid to assume that the knockdown factor

is independent of strain. At strains high enough for tow straightening to change Ee, the composite

stress-strain relation is likely to be dominated by tow and matrix failures.

In representing the resistance of the tows to lateral deflections by the stiffness of the

effective medium, it is assumed that such deflections would arise from shear alone. However, at

least in principle, both shear and pure bending could contribute significantly to lateral deflections.

The proportions of the total deflection arising from each will depend on the length of the tow

element, among other things, with long elements favoring the dominance of the pure bending

contribution. A simple estimate of these effects is presented in Appendix C. For the computational

tow elements defined here and for all current applications in polymer composites, shear is the

dominant mode of lateral deflection. Thus shear stiffness is properly ascribed to the effective

medium, leaving the tow elements themselves with no inherent resistance to lateral loads. This

division has the added virtue of minimizing the degrees of freedom in the model.

Strength in Compression

The strength of a tow in compression is dictated by the mechanics of kink band formation,

with the critical value, t_k, of the axial stress being given by Eq. (4). Thus ak depends on two

factors, the misalignment angle _k and the local shear stress due to lateral loads, "rl, both of which

may change as the composite responds to load. The shear stress, "c1, in any tow element can be

computed at each load increment from the shear stresses in adjoining effective medium elements.

How the misalignment angle _k is treated depends on whether the misalignment occurs

over a gauge length that is larger or smaller than the tow element size. If it is larger, then _k is
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computedfrom the nodal displacements. If smaller, then the role of _k is subsumed in the

constitutive properties of the tow, which are prescribed a priori from micromechanical arguments.

Misalignments can be measured from digitized photographs of specimen cross-sections: the

inferred _k will generally be a random variable.

Strength in Tension

The stress _t in any tow element can be strongly affected by tow undulations. For

undulations of wavelength greater than the element length, resulting variations in ot along the

length of a tow are computed directly in solving the model. Undulations lying within a single

element are represented by the reduced effective stiffness, Ee, of Eq. (17): thus

ot = Eeet, (18)

where et is the axial strain in the tow element implied by its nodal displacements alone.

The failure of a tow in tension is modeled simply by the criterion that failure occurs when

fit = o'(tc) , (19)

_(c) is a material property.where ot is the axial stress in the tow element and the critical stress, u t ,

The critical stress depends upon intrinsic flaws in the tow, including flaws associated with

crimping or distortion caused by consolidation. It is a random variable whose distribution of initial

values will probably always be evaluated by fitting the model to experimental data. It may be

reduced during loading by lateral loads imposed on a nominally aligned tow by neighboring tows.

(c) for elements in the aligned tow could be lowered during a simulation inIf so, the value of o t

proportion to such lateral loads, as measured by the maximum shear in adjacent effective medium

elements.

Post-failure Properties

The most important local phenomenon following failure of a tow in either compression or

tension is the transfer of load to neighboring tows. This is represented by the constitutive law

coupling tow and effective medium nodes, as described in the following section. Once the tow has

failed, the stiffness of the failed element is usually reduced to zero.
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However, therearecircumstanceswhereexperimentalevidenceindicatesmorecomplex

behavior.One is intimated by thecomplex kink bandstructureof Fig. 21. Kink bandsbegin

forming at strains of 1-2%, whereasultimate failure in tests occursat strains up to 15%,
whereuponpostmortemexaminationisundertaken.Multiple kinks,suchasthosein Fig. 21,have

presumablydevelopedasa successionof kinking eventsoversuchlargestrains.Oneexplanation
of thisphenomenonis thatkinks lock upafteracertainamountof axialstrain,whereuponthetow

canagainbearlargeloads.Furtherloadingcan leadto anew kink band,which is very likely to

abut the prior damage,sincethatwill act asa nucleationsite. Themechanicsof lockup andits
relationto axial sliding of a failedtow aredescribedin AppendixD. Theupshotis the schematic

stress-strainresponsefor thetow elementshownin Fig. 22.

SCP-O478-E
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Fig. 21 System of kink bands at one site of local failure in a woven interlock composite tested to
failure in uniaxial compression.
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Fig. 22
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Schematic of the stress-strain history of a tow element within which multiple kink
banding occurs in compression.

Properties in Fatigue

The observed absence of microcracking prior to kink band formation in compression-

compression fatigue (Section 4) implies that fatigue damage in compression consists of

degradation of the interior of the primary load bearing tows. It has previously been pointed out

[33] that fiber misalignment causes lateral or resolved shear loads in unidirectional composites that

are large enough to damage the epoxy resin. In compressive fatigue loading, such damage will

gradually lower the effective shear strength of the resin, which in turn will lower the critical stress

for kink band failure (Eq. (4)). When that stress falls below the maximum applied compressive

stress, the tow will fail. This model is consistent with the observation that kink bands form earliest

in fatigue at locations of maximum misalignment. A feasible fatigue law for compressive fatigue is

that

dXo _ Ai (At_l_k) n' (AI > 0) (20)
dN

where N is the number of elapsed fatigue cycles, AGt the local stress amplitude in a tow element

whose misalignment is _k, and A1 and nl are to be evaluated empirically. The exponent nl could

be deduced from the slope of a strain-life curve by varying the degree of rnisalignment achieved in

processing or by comparing the cycles to kink band formation at sites that differ in misalignment.
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In tensilefatigueloading,thefirst evidentfatiguedamageis matrix crackingnormalto the
load axis (Section2.2). This will be dealt with below under the constitutivepropertiesof the

effectivemedium.Matrix damageis followed by tow rupture.Therule of mixturesdemonstrates

that the increasein load in the alignedtowsbecauseof matrix cracking mustbe slight. More
importantly, tow misalignmentmightbeexpectedto introducesignificant shearstresseswithin

towsin tensionjust asin compression,leadingto direct fatiguedamageof theresinwithin tows

[33].Thismight lower tow strengthif fiberssufferattritionfollowing fragmentationof theresin.A

law similar to thatin compressionissuggested:

do'(tc) = - A2 (AC_t(_k)n2 (A 2 > 0) (21)
dN '

where A2 and n2 are further empirical parameters.

Whether Eqs. (20) and (21) are confirmed by experiments or whether tests will suggest

alternative forms remains a topic of research.

6.2 Constitutive Laws for Effective Medium Elements

Elastic Properties

An assembly of tow elements such as that of Fig. 20 cannot adequately model macroscopic

shear stiffness, through-thickness stiffness, or Poisson's effect. The effective medium corrects

these deficiencies.

One face of a typical effective medium element is outlined on the micrograph of an angle

interlock composite shown in Fig. 23. It contains resin pockets and parts of tows oriented in

various directions. While its elastic properties are complex in detail, those that remain after the axial

stiffness of tows has been removed to tow elements can be approximated very simply in their

spatial average. For most composite properties, it is a fair approximation to assume that the

effective medium is homogeneous and isotropic in the elastic regime, with properties given by

rules of mixtures. Let Gf and Gr be the shear moduli and vf and Vr Poisson's ratios for the fibers

and resin. Then the shear modulus Gm and Poisson's ratio Vm for the effective medium can be

written

I_!__ V._f.f+ l-Vf (22a)
G m - Gf Gr

53



and

Vm -_ Vf Vf 4- (1 - Vf) Vr , (22b)

where, making due allowance for resin pockets and fluctuations in tow density, Vf is the volume

fraction of all fibers averaged over the composite, as measured, for example, by weighing the

fibers after removing the resin by acid digestion.

stuffer

filler warp
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Fig. 23 A section of a through-the thickness angle interlock woven composite, consisting of AS4
carbon tows in an epoxy resin matrix. The rectangle outlines one face of a typical
effective medium element.

Strength

Tensile failure of effective medium elements occurs, for example, in the delamination of

layers of stuffers and fillers during compression or in the formation of matrix cracks normal to the

load axis under monotonic or cyclic tensile loading. The strength of an effective medium element is

denoted _mc). Examination of many micrographs reveals that the most important cracks form in

layers of resin between tows rather than within the tows themselves. 2 Therefore, O'(mc) is likely to

reflect the properties of the resin. However, cr_ ) will also depend strongly on the geometrical

2Some microcracks are formed within tows when high through-thickness compaction loads are applied during
processing. Such cracks have no effect on damage progression that has been observed as yet, although they could
conceivably lower the critical stress for kink band formation and accelerate fatigue damage within tows.
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detailsof local fluctuations in tow deployment, resin porosity, etc., which are extremely difficult to

measure or model. Furthermore, the grid is so coarse that the value of O_mc) at which matrix crack

propagation occurs for a given value of the applied load is likely to depend on the element size.

Therefore, O'(me) will usually be treated as a model-dependent, empirical parameter.

In fatigue, one might conjecture a law paralleling Eqs. (20) and (21):

dO'me) A3 (Affm)n3 (A3 > 0),
dN

(23)

where A3 and n3 are empirical parameters and At_ m is the cyclic stress amplitude in the effective

medium element.

For failure in either monotonic loading or fatigue, experiments show that the fracture plane

almost always either separates pairs of adjacent tows or separates layers of tows. For a model

geometry such as that of Fig. 20, the relevant component of stress to be compared with ottoc) will

accordingly lie in one of the Cartesian directions shown in Fig. 20. It should be averaged over the

tow element, since computed variations within an element depend on the choice of element size.

Post-failure Properties

After failure, an effective medium element will have no remanent strength in tension, but

will continue to support load in compression. It can also bear tensile loads in directions orthogonal

to the plane in which it failed. For example, the microcracks observed normal to the load axis in

tension-tension fatigue diminish the axial stiffness but do not necessarily imply the delamination of

stuffers and fillers. Thus, after failure, effective medium elements are anisotropic.

6.3 Constitutive Laws for Coupling Springs

Coupling Between Tow and Effective Medium Elements

When a tow fails, whether in axial compression or tension, stress redistribution is

governed by sliding of the broken tow parallel to its axis in the vicinity of the failure site.

Experimental observations suggest that sliding is Mode II displacement of a circumferential debond

crack. A reasonable description of the redistribution of load is given by the shear lag model of

Fig. 24(a). In the shear lag model, load is transferred from the tow to the surrounding composite

(or "effective medium" in the binary model) via a constant frictional shear stress, xf, acting over the
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Fig. 24 (a) Shear lag depiction of stress redistribution near a site of tow failure. (b) Analog of (a)
in the binary model. Tow and effective medium nodes have been drawn in (b) with
different vertical coordinates solely to make them separately visible. Under axial loads,
only their horizontal coordinates could differ in the orientation shown. (c) The
constitutive law for axial displacements coupling springs between tow and effective
medium elements.
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sliding boundary. The shear tractions restore the axial load, ax, in the tow from zero at the site of

failure to the far field 3 value, ot, over a characteristic length, Is, given by force equilibrium:

_t

Is = idffx/dxl (24a)

_.__ SlTf- _-t (24b)

where s is the circumference of the tow and At its cross-sectional area.

If the binary model is to describe stress redistribution correctly, then the gradient of axial

stress in a tow near a failure site must have the value given by Eq. (24b), at least in its spatial

average. This can be assured by appropriate specification of the constitutive laws for the nonlinear

springs coupling tow and effective medium nodes. The discontinuity in the axial load in successive

tow elements near the site of tow failure is simply the axial force, fa, imposed by the coupling

spring. The axial load in tow elements near the site of failure is therefore the staircase function

shown schematically in Fig. 24(b). This function will have the same average gradient as crx(x) in

Fig. 24(a) provided

= SXoL , (25)

where L is the computational element length. Equation (25) prescribes a force that is independent

of the relative displacement, da, of the relevant tow and effective medium nodes in the axial

direction, as in Fig. 24(c).

The relative axial displacement of the nodes it couples is the only degree of freedom needed

for a coupling spring between a tow and the effective medium. The tow and effective medium

nodes always coincide in their lateral displacements.

In the common case that 'Co represents frictional sliding, its value should change with the

transverse compression acting on the tow. The latter can be evaluated and continually updated by

averaging the stress fields in adjacent effective medium elements during a simulation. In this way,

the additional compressive loads introduced by warp weavers via the mechanism of Fig. 19 can be

modeled.

3"Far field" refers here simply to the composite beyond the domain of sliding. Since the stiffness of tow elements is

generally a random variable, the stresses in tow elements even in domains far removed from any stress concentrator

do not share a unique value.
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The useof coupling springs not only provides approximately correct stress recovery in a

tow near a site of failure, but also avoids physically improper behavior which would otherwise

arise from the fact that tow elements have no cross section.

Coupling Between Warp Weavers and Fillers

In practice, the optimum combination of in-plane and through-thickness properties is

usually attained in a 3D woven composite if the warp weavers are of considerably lighter denier

than the stuffers or fillers and accordingly of lower volume fraction [26]. This invites the

simplification of coupling warp weavers by springs directly to the fillers around which they wrap,

rather than via effective medium elements, thus reducing the degrees of freedom of the model. The

locations of such springs are shown in Fig. 20, while constitutive laws for them are given in

Appendix E. This simplified treatment of warp weavers is satisfactory at least for in-plane

properties in the elastic regime. In modeling failure, the critical role of warp weavers is to impose

lateral loads on fillers, which remains well represented.

7. Applications of the Binary Model

The binary scheme outlined above is potentially applicable to very diverse 2D and 3D

woven and braided composites, given suitable definitions of grids and minor modifications of the

constitutive laws. It is also ultimately a viable approach to modeling continuously reinforced

structures, such as integrally woven or braided skin/stiffener components for airframes. Such

longer term goals noted, the following examples and remarks address the subject materials of this

program.

Monotonic Loading

The computer code written to solve the binary model was based on the ABAQUS finite

element package.t Some illustrative simulations carried out with the ABAQUS-based code are

presented here. They demonstrate some of the effects of introducing random strengths for tow

elements and randomness in tow positioning.

The simulations were of uniaxial tension of through-the-thickness orthogonal interlock

woven composites under displacement control. Cartoons of the model structure are shown in

Fig. 25. Warp tow elements are shown there as ribbons, faces of effective medium elements as

quadrilaterals, and sections of fillers as black dots. Each simulation modeled a section of material

t Hibbitt, Karlsson, and Sorensen, Inc., Pawtucket, Rhode Island.
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containingtendistinct layersnormal to the filler direction,which Fig. 25 showsin anexploded

view. Six of the layerscontainstuffersandtwo containwarpweavers.Theninth andtenthlayers

containnowarptows;theyareincludedto avoidtow elements(which shouldlie alongtow axes)

beingpresenton specimensurfaces.Simulationswereexecutedfor both idealandirregulartow

positioning.Irregularitywasintroducedby offsettingtheinitial, stress-freecoordinatesof nodes.
Theoffsetswerechosenby MonteCarlomethods,i.e.,usingapseudo-randomnumbergenerator,

accordingto anadhoc randomwalk model.The magnitudesof the tow displacementswere on

averageabout30%of thetow spacingin anydirection.

(a) Ideal
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Fig. 25 Element geometry and damage sequence for orthogonal interlock composites with
(a) ideal geometry and uniform tow element strengths; (b) random geometry and random
tow element strengths. The inset stress strain curves contain a color code that allows the

sequence of tow failures to be mapped. The ten parts in each exploded view are planes
normal to the y-axis. They lie in the order indicated by the labels Yl ..... YI0.

59



r



The stiffnesses of tow elements and effective medium elements, the average tow element

strength, and the element dimensions that were chosen are typical of AS4 carbon tows in an epoxy

resin (Table 13). The tow elements were either assigned uniform strengths (the average (O(ct)) of

Table 13) or normally distributed strengths with standard deviation 20% of the average. If

strengths were uniform, one centrally located element was assigned a slightly lower value than the

rest, to ensure that failure started away from the specimen ends. For random strengths, the lowest

strength value generated was always assigned to that same element. The effective medium was

assigned infinite strength: since it is so soft, the qualitative results considered here are not greatly

affected.
Table 13

Specifications for the Simulations of Fig. 23

ks (Nt)

kf (Nt)

2x 105

ay (mm)*

1 x 105

kww (Nt) 2.5 x 104

ax (mm)* 2
1.8

az (mm)*
Em (GPa)

(o(tc)) (GPa)

(o_)) (GPa)

0.65

10

2

oo

* See Fig. 20 for definition

In these illustrative simulations, the degree of freedom that allows relative sliding of failed

tow elements and the surrounding composite, as described in Section 6, was suppressed. (It is

difficult to treat in the ABAQUS-based code.) This corresponds to the friction stress x and

therefore the stress concentration on tows neighboring a failure site both being large (but finite).

In each simulation, the applied strain was incremented in steps small enough that at most

two or three and usually zero or one tow elements would fail. (Complete control is not possible in

the ABAQUS-based code). The simulations were carried on to large strains.

Figure 26 shows load-strain records for uniaxial tension simulations under displacement

control in the stuffer direction. The curves show the effect of successive tow failure events.

Figure 26(a) is the case of ideal geometry and uniform tow element strengths. Brittle behavior is

found: when one tow element fails, propagating stress concentration causes many tow elements to



fail in an unstable manner.t Only the stabilizing influence of the fixed grip loading conditions and

the unrealistically infinite strength of the effective medium prevent total failure of the specimen.

The other three cases (Figs. 26(b)-(d)) show the effects of irregular geometry and random strength

assignments acting separately or together. Randomness in either geometry or strength enhances

ductility.
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Fig. 26 Load-strain curves for various combinations of randomness of tow strength and
geometry.

? In the ABAQUS-based code, all critically loaded elements must fail in a single load increment. For elements of

uniform strength, this leads to multiple, simultaneous element failures along a single stuffer, as seen in Fig. 25(a),
even when the load increment is very small• This unappealing and unphysical effect disappears as the distribution of
tow element strengths broadens (Fig. 25(b)).



This trend is underscored by the failure sequence of tow elements, which has been

incorporated in Fig. 25 by color coding. The value of applied strain at which any tow failed is

revealed by matching its color against the color strips in the inset stress-strain record.

For ideal geometry and uniform strength (Fig. 25(a)), tow failure propagates in a

symmetric, deterministic way from the first failure site. Nearly all elements on the plane on which

the first failure occurred fail with very little increase in applied strain. Two elements survive,

shielded by nearby warp weavers. A complete fracture path is still formed during the first load

drop by the failure of the elements on either side of the two survivors. The propagating effects of

stress concentration dominate the damage evolution.

In contrast, for the case of irregular geometry and random tow element strengths

(Fig. 25(b)), half the tow elements on the plane of first failure remain intact throughout the entire

process. Damage is distributed over the whole specimen, tending to occur in bursts in one distinct

region after another. Randomness has induced a brittle/ductile transition.

The damage sequence when only one of geometry or strength is random appears

intermediate between Figs. 25(a) and (b), as Fig. 26 and intuition would suggest. The patterns of

failure found for random geometry or random strength are quite similar to one another. By

increasing the variance of either initial node positions or tow element strengths, a brittle/ductile

transition can be induced. Which one is the stronger factor in current 3D composites remains to be

investigated.

Fatigue Loading

Simulations of fatigue are similar in complexity to simulations of monotonic loading, but

follow different constraints. Typically, either the cyclic applied load amplitude or the cyclic applied

strain amplitude is specified and held constant throughout the simulation. Damage is then measured

over elapsed cycles, N, treated as a continuous variable. The strength of each element decays with

N according to Eqs. (19), (20), and (22). The parameter t_k is a random variable assigned an initial

value for each element. The local cyclic load amplitude, Aot or AOm, is computed by the model.

Equations (19), (20), and (22) are integrated to identify the first element whose strength falls in

fatigue to a value equal to the maximum load it bears in any load cycle. That element is then failed.

The simulation is then relaxed to determined new cyclic loads on all remaining elements, which are

then tested for failure without further increase in N. If none fails, Eqs. (19), (20), and (22) are

integrated again, now using the new values of local stress amplitude, until another failure is found.
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Ultimate failure occurswhentherearesufficient failedelementsto causecatastrophicdamage

propagationin onecycle.Quantitativeexamplesof fatiguesimulationsarebeingconductedin our
newcontract.

Engineering Applications

As illustrated above, single simulations are executed by assigning random parameters

(strengths and irregularity) with a pseudo-random number generator. The statistics of composite

properties are then determined from an ensemble of simulations. Ultimately, calculations would be

more efficient in a probabilistic formulation such as a Markov chain or diffusion equation.

However, in this investigative phase, Monte Carlo methods have the great advantage that newly

discovered phenomena are relatively easily programmed into the solution. In particular, the number

of independent variables can be readily changed in a Monte Carlo simulation, whereas changing the

dimension of a probabilistic formulation is a major programming exercise.

Input for the model consists of geometrical and material parameters, which either refer to

deterministic quantities, e.g., average stiffnesses and lengths, or are parameters in the distributions

of random variables. Some of the parameters can be regarded as known a priori from

micromechanical arguments or measurements. Others will be empirical, having to be determined by

calibrating the model against test data for the composite. A great part of current research is directed

to determining which parameters fall into which category.

64



1

.

.

.

.

.

.

.

.

.

10.

11.

References

Ko, F., "Three-Dimensional Fabrics for Composites", in Textile Structural Composites,

Composite Materials, 3, ed. T.-W. Chou and F. Ko (Elsevier, New York, 1989) Chapt. 5.

T.-W. Chou, R.L. McCullough, and R.B. Pipes, "Composites", Scientific American

254[10], 193-203, 1986.

J. Brandt, K. Dreschler, and R. Meistring, "The Application of Three-Dimensional Fiber

Preforms for Aerospace Composite Structures", Proc. ESA Symp. on Space Applications

of Advanced Structural Materials, ESTEC, Noordwijk, Netherlands, March 1990 (ESA

SP-303, June, 1990) pp. 71-77.

M.B. Dow and D.L. Smith, "Damage Tolerant Composite Materials Produced by Stitching

Carbon Fabrics", Int. SAMPE Tech. Conf. Series, Vol. 21, 1989, pp. 595-605.

B.N. Cox, "A View of 3D Composites", in Proc. IRC 92, Birmingham, England,

September 1992, ed. M.H. Loretto and C.J. Beevers (MCE Publ., Birmingham, 1993).

R.E. Horton and J.E. McCarty in Engineered Materials Handbook, Vol. 1, Composites.

(edited by C.A. Dostal), Am. Soc. Metals, Metals Park, Ohio (1987).

R. Palmer and F. Curzio in Fiber-Tex 1988 Conference Proc., Greenville, South Carolina,

1988. NASA Conf. Publication 3038 (1989).

L.E. McAllister and W.L. Lachman in Fabrication of Composites, Handbook of

Composites, Vol. 4, p. 109, Elsevier, New York (1983).

B.N. Cox, M.S. Dadkhah, R.V. Inman, W.L. Morris, and J. Zupon, "Mechanisms of

Compressive Failure in 3D Composites", Acta Metall. Mater 40, 3285-98 (1992).

Falcone, A., Dursch, H., Nelson, K., and Avery, W., "Resin Transfer Molding of Textile

Composites", NASA Contractor Report CR 191505, July, 1993.

M.R. James, W.L. Morris, and B.N. Cox, "A High Accuracy Automated Strain Field

Mapper", Exptl. Mechanics 30, 60-67 (1990).

65



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

M.R. James,W.L. Morris, B.N. Cox and M.S. Dadkhah, "Description and Application of

Displacement Measurements Based on Digital Image Processing", in Micromechanics:

Experimental Techniques, ed. W.N. Sharpe, Jr. (ASME, New York, 1989).

A.S. Argon, "Fracture of Composites", in Treatise of Materials Science and Technology,

Vol. 1, Academic Press, New York, 1972.

B. Budiansky, "Remarks on Kink Formation in Axially Compressed Fiber Bundles", in

Preliminary Reports, Memoranda and Technical Notes of the Materials Research Council

Summer Conference, La Jolla, California, July 1979 (DARPA, 1979).

B. Budiansky and N.A. Fleck, "Compressive Failure of Fiber Composites", J. Mech.

Phys. Solids, 41 (1993) 183-211.

P.T. Curtis and S.M. Bishop, "An Assessment of the Potential of Woven Carbon Fiber-

Reinforced Plastics for High Performance Applications", Composites 15, 259-65 (1984).

M.R. Wisnom, "On the High Compressive Strains Achieved in Bending Tests on

Unidirectional Carbon-Fiber Epoxy", Composites Science and Technology 43 (1992) 229-

235.

D.M. Thouless and A.G. Evans, Acta Metall. 36, 517 (1988).

M. Sutcu, "Weibull Statistics Applied to Fiber Failure in Ceramic Composites and Work of

Fracture", Acta MetaU. 37, 651 (1989).

B.N. Cox and D.B. Marshall, "Concepts for Bridged Cracks in Fracture and Fatigue",

Acta Metall. Mater., 42 (1994) 341-63.

A.H. Cottrell, "Mechanics of Fracture", Tewksbury Symposium on Fracture, University

of Melbourne (1963) pp. 1-27.

J.R. Rice, "The Mechanics of Earthquake Rupture", in Physics of the Earth's Interior,

Proceedings of the International School of Physics, "Enrico Fermi", ed. A.M. Dziewonski

and E. Boschi (North Holland, Amsterdam, 1980) pp. 555-649.

A. Hillerborg, "Analysis of One Single Crack", in Fracture Mechanics of Concrete, ed.

F.H. Wittmann (Elsevier Science, Amsterdam, 1983) pp. 233-49.

66



24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

G. Bao andZ. Suo, "Remarks on Crack Bridging Concepts", Appl. Mech. Review 45

(1992) 355-66.

B.N. Cox, "Fundamental Concepts in the Suppression of Delamination Buckling by

Stitching", in Proc. 9th DoD/NASA/FAA Conf. on Fibrous Composites in Structural

Design, Lake Tahoe, Nevada, November, 1991, ed. J.R. Soderquist, L.M. Neri, and

H. Bohon (U.S. Dept. Transportation, 1992) pp. 1105-10.

B.N. Cox, "Delamination and Buckling in 3D Composites", J. Comp. Materials, in press.

P.M. Jelf and N.A. Fleck, "The Failure of Composite Tubes Due to Combined

Compression and Tension," J. Mater. Sci., in press.

M.P.F. Sutcliffe and N.A. Fleck, "Effect of Geometry on Compressive Failure of Notched

Composites", Int. J. Fract., in press.

Shuart, M., "Short-Wavelength Buckling and Shear Failures for Compression-Loaded

Composite Laminates", NASA TM 87640 (1985).

Cox, B.N. "Extrinsic Factors in the Mechanics of Bridged Cracks," Acta MetalI. Mater. 39

(1991) 1189-1201.

Stover, D., "Near-net Preforms and Processes Take Shape", Advanced Composites,

July/August 1992.

Slaughter, W.S., Fleck, N.A., and Budiansky, B., "Compressive Failure of Fiber

Composites: The Roles of Multiaxial Loading and Creep", ,1. Engng. Mater. Tech. 115

(1993), 308-13.

Piggott, M.R., and Lam, P.W.K., "Fatigue Failure Processes in Aligned Carbon-Epoxy

Laminates", in ASTM-STP 11 l0 (ASTM, Philadelphia, 1991).

67





Appendix A

Processing of Lightly Compacted Composites

We consolidated the lightly compacted composites ourselves, using methods developed

ad hoe. The matrix in all cases was formed from Tactix 138 resin and H41 hardener.§ The

preform was placed in a reusable aluminum mould, heated to 65°C, and degassed in a vacuum of

~ 1 Torr. The resin was then mixed with the hardener and also heated to 65°C and degassed. The

mixture was poured over the preform (still at 65°C) and the whole assembly was degassed twice

again. The first degassing typically resulted in bubbling out of some volatiles followed by apparent

boiling as the pressure fell. The pressure was then cycled between 1 Torr and atmospheric pressure

to remove small bubbles clinging to the mat. The mould was closed and the specimen cured, the

curing cycle (chosen to maximize resin toughness) comprising 2 h at 120°C and 2 h at 177°C. All

fabrication runs produced 25 x 10 cm panels, from which specimens were machined.

Figure A. 1 shows representative cross sections of a through-the-thickness angle interlock

specimen. There is no visible porosity in the optical micrograph of Fig. A. l(a), while the scanning

electron micrograph of Fig. A. l(b) shows complete wetting of each fiber in an individual filler tow

and the absence of any matrix or interfacial microcracking. If care was taken to avoid excess resin

on the specimen surfaces (which was not especially easy, since the preform thickness varied), the

only microcracks to be found occurred in surface pockets of resin between tows. Such microcracks

would extend into the composite until they encountered the internal microstructure. Thus their

average size was about the diameter of one fiber tow. The large openings of these cracks attest to

the substantial, tensile residual stresses in the epoxy, which evidently drive the microcracking.

However, detailed observations of failure mechanisms revealed that these initial surface

microcracks have no role in compressive failure.

During impregnation and cure, a small pressure was applied through the thickness of the

preform by bolting down the lid of the mould. This pressure was sufficient to ensure firm contact

between the mould and the thicker parts of the preform, but not sufficient to maximize fiber

packing density elsewhere.

§ Dow Chemical, Freeport, Texas.

PAr_.di III..NI_ NOT FILMED
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(a) (b)
SCP.O,._O1-E

Fig. A.I (a) Optical micrograph of section parallel to warp fibers through composite of preform
l-T-1 of Table 1 with Tactix 138/H41 matrix. (b) SEM micrograph of section through
an individual filler in (a).
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Appendix B

Shear Flow Stress for Klnking of Tows

This appendix addresses the shear flow stress, xf, upon which the critical compressive load

for kink band formation depends (Eq. (4)).

In fact, neither the Shell 1895 nor the Tactix 138 resin alone exhibits significant plastic

flow except under uniaxial compression. Both appear very brittle in either tension tests or "shear"

tests using Iosipescu specimens. In the latter tests, catastrophic cracking spreads from small

volumes of material near the notches where tensile stresses exist. Thus properties relevant to kink

band formation in composites are not observable in the neat resin. The relevant properties are those

of the resin when it is under the mechanical constraint of the fibers.

One approach to measuring 'gf might be to attempt shear loading experiments on tows in the

subject 3D woven composites. However, such an experiment is hard to devise and would be even

harder to analyze, since the local stress state is very complicated. Tests were run instead on +45 °

laminates, following work by earlier authors [27].

Laminates were available for the AS4/Shell 1895 system only. They consisted of

symmetric +45 ° lay-ups of "uniweave" fabric, in which AS4 and glass fibers are combined in the

proportion 19: I by volume in a plane weave. "Uniweave" is prepared to facilitate handling. The

glass fibers have an insignificant effect on failure in the present context. The total volume fraction

of AS4 fibers is similar in the laminates to that measured within individual tows in the 3D woven

composites.

The laminates were loaded in uniaxial tension along the 0 ° direction. The onset of near-

perfect "plasticity" in Fig. B. 1 is associated with microcracks in the resin that are arrayed linearly

in the fiber direction (Fig. B.2). In fact, consistent with tests on neat resin, the resin near the

microcracks shows no sign of plasticity in the continuum sense. The nonlinearity in macroscopic

stiffness evidently arises from the microcracks themselves or frictional sliding when an array of

microcracks collapses into a band of more severe damage at high strains.

Since kink bands involve strains exceeding 1%, the pertinent domain in Fig. B.2 is that for

which near-perfect plasticity prevails. The shear stress resolved in the fiber direction in any ply in

the +45 ° laminate is half the applied load. Thus, from Fig. B. 1, xf = 75 MPa for the AS4/Shell

1895 composites.
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Fig. B.1 Applied load vs strain for +45 ° laminates of AS4/Shell 1895 loaded in uniaxial tension
along the 0 ° direction.

Fig. B.2 A view of the original panel surface from a tested specimen, showing a linear array of
microcracks in the resin of a +45" AS4/1895 laminate, the source of the "plasticity" in
Fig. B-I. The array follows the local fiber orientation.

Similar laminates of AS4/Tactix 138 were not available for testing. However, since the

Tactix 138 and Shell 1895 resins exhibit similar properties in uniaxial tension and compression, xf

for Tactix 138 was also assigned the value 75 MPa. This must be a fair value for the rough

estimates of kink band stresses in Table 7.
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Appendix C

Effective Flexural Rigidity of a Tow

Consider the problem of a tow segment of length L loaded transversely by a force of

magnitude F at one end (Fig. C. 1). Suppose the other end is built in. The deflection Vb(X) arising

from bending satisfies

EtI d2vb - Fx, (C. 1)
dx 2

where Et is the axial Young's modulus of the tow and I is the relevant moment of inertia; while

that, Vs(X), arising from shear satisfies

dv s

AGt -_x = F, (C.2)

where Gt is the shear modulus of the tow and A is its cross-sectional area. Hence the displacement

contributions at the load point x = 0 are in the proportion

Vs(0)_ FL /FL 3
vb(0) AGt 3EtI

2
3 a Et

(C.3)

(C.4)

for a tow of elliptical cross-section with semi-axis a in the direction of bending.

SC.2875CS.051894

X

Fig. C. 1 Cantilever beam paradigm for estimating the proportions of bending and shear in a
transversely loaded tow segment.
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The axial modulus Et can be approximated by Eq. (13). The shear modulus Gt can be

estimated by rule of mixtures from the shear moduli Gf and Gr of the fiber and resin:

_!_ = v__.tt+ 1-vt (c.5)
Gt Gf Gr

where V t is the volume fraction of fibers in a tow. For typical graphite/epoxy or glass/epoxy

systems, the term in Gf is negligible.

The ratio Et/Gt is typically fairly large - for AS4 graphite fibers in Shell 1895 resin, the

material combination for many of the composites studied here, Vt -- 0.7, Ef = 250 GPa, and

Er = 3.5 GPa, leading to Et -_..200 GPa, Gt -__4 GPa, and Et/Gt _- 50. Substituting this number

into Eq. (C.4) shows that shear will dominate lateral deflections of a tow segment if a force couple

acts over lengths less than five tow widths.

This criterion is satisified for forces acting on the ends of tow elements in the binary model.
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Appendix D

Kink Band Lock Up

The relation between kink band lock up and the axial sliding of debonded tow segments can

be elucidated by simple shear lag analysis.

Following formation of a kink band, the fiber segments within the band rotate (Fig. D. 1).

At first, the rotation is accompanied by transverse dilatation. But as rotation progresses, the fibers

are drawn back together. At some critical rotation angle, 0c, the volumetric strain in the band

vanishes and further rotation is very strongly resisted. The band is effectively locked up. If the

boundaries of the kink band form at angle 13to the boundaries of the tow (Fig. D. 1), the condition

of vanishing volumetric strain leads to [31 ]

0c = 2_ (D.1)

Typically, 13= 20-30 °.

Assume that kinking is accompanied by debonding of the tow over a sliding length Is and

that the axial compressive stress at the kink band is zero prior to lock up. Then, according to the

same shear lag model that underlies Eq. (24), sliding will produce an axial displacement u of the

ends of each of the intact parts of the tow given by

u = 1 °_t At (D.2)
2 Ets %

where ot is the stress in the tow remote from the kink band, At and s are the cross sectional area

and circumference of the tow, and Xo is the critical shear stress for sliding of the tow.

If the length of fibers within the kink band is h (Fig. D. 1), lock up will occur when

u=h(1- cOS0c)
(D.3)

The corresponding value, Ol, of the remote stress in the tow is

$1;o]1/2(_l = 2u • Et At ]
(D.4)
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Thecritical stressfor lock up depends via Eq. (D.3) on the kink band length, h, which is difficult

to predict.

h /
"J

//?--

//

SC.IOO6E.t t 1893

I

Fig. D. 1 Schematic of fiber rotation within a kink band.
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Appendix E

Coupling Springs Between Warp Weavers and Fillers

Figure E. 1 shows a schematic of a warp weaver wrapping around a filler. The warp

weaver has a radius rw and the filler a radius rf, which can be estimated from the fiber volume

fraction, Vt, within a tow (Vt -__70%), the denier of the tow, and the density of the fibers. In the

elastic regime, displacement of the point P on the axis of the warp weaver relative to the point R on

the axis of the filler is resisted by the transverse stiffness, Etr, of the two tows. This might be

approximated by the rule of mixtures:

Etr = [Vt/F-,f + (1-Vt)/E r ]-!, (15.1)

where Ef and Er are the fiber and resin moduli. Assuming the contact area 4rfrw (Fig. E. 1), the

effective spring constant kwf coupling the warp weaver and filler is defined by

kwf = Etr. 4rfrw, (E.2)

where the spring constant relates force to proportional change in displacement. Equation (E.2) can

be readily generalized to the case of tows containing different kinds of fibers.

Failure of the spring occurs at some critical tensile displacement, which will usually be

treated as an empirical parameter.

SC-291_T

____S _'J- failleerof rfO2t act

warp weaver

2rf

Fig. E. 1 Schematic of a warp weaver wrapping around a filler in an interlock weave.
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comprehensive picture of the essential mechanisms of failure and how they are related to the reinforcement geometry. The
critical characteristics of the weave architecture that promote favorable properties have been identified. Key parameters are
tow size and the distributions in space and strength of geometrical flaws. The geometrical flaws should be regarded as
controUable characteristics of the weave in design and manufacture.

In addressing our goals, the simplest possible models of properties were always sought, in a blend of old and new modeling
concepts. Nevertheless, certain properties, especially regarding damage tolerance, ultimate failure, and the detailed effects of
weave architecture, require compotationally intensive stochastic modeling. We have developed a new model, the "Binary
Model", to carry out such tasks in the most efficient manner and with faithful representation of crucial mechanisms.

This is the final report for contract NAS1-18840. It covers all work from April 1989 up to the conclusion of the program in
Januar_ 1993.

14. SUBJECT TERMS

3D composites, interlock weaves, failure mechanisms, compression, tension, fatigue,
micromechanics, failure models

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION `19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT

I In,,-IsteeiFu_ I lru'tJ_Lq_qifit_rl

NSN 7540-01-280-5500

15. NUMBER OF PAG"I:S

88

16. PRICE'CODE

A05
20. LIMITATION O'F ABSTRACT

Standard Form 298 (Rev 2-89)
Pre$criDffd b_ ANSI Std I]9-18

29B-I02


